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Abstract

The goal of this project is to obtain and validate three dimensional atomistic models for the
organic matter in both oil shales and oil sands. In the case of oil shales the modeling was
completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for
asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in
this report were developed starting from existing literature two dimensional models. The
models developed included one kerogen, based on experimental data on a kerogen isolated
from a Green River oil shale, and a set of six representative asphaltenes.

Subsequently, the interactions between these organic models and an inorganic matrix was
explored in order to gain insight into the chemical nature of this interaction, which could
provide vital information in developing efficient methods to remove the organic material from
inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an
aluminum silicate oxide clay.

In order to obtain the feedback necessary to validate the models, it is necessary to be able to
calculate different observable quantities and to show that these observables both reproduce
the results of experimental measurements on actual samples as well as that the observables
are sensitive to structural differences between models. The observables that were calculated
using the models include >C NMR spectra, the IR vibrational spectra, and the atomic pair wise
distribution function; these were chosen as they are among the methods for which both
experimental and calculated values can be readily obtained. Where available, comparison was
made to experiment results. Finally, molecular dynamic simulations of pyrolysis were
completed on the models to gain an understanding into the nature of the decomposition of
these materials when heated.
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I. Overview

The stated goals of this work are to obtain validated three dimensional (3D) models of kerogen,
the insoluble organic matter found in sedimentary rocks such as oil shale, and asphaltenes,
found in tar or oil sands. Asphaltenes, which are soluble organic fragments, can also be
obtained from the breakdown or processing of kerogen. Subsequent to obtaining models,
additional goals include modeling the interactions between these organic entities and an
inorganic matrix in order to understand the chemical nature of this interaction, which could be
vital information in developing new methods to remove the organic material from shale
deposits using a much lower carbon footprint. The models are also used to calculate various
observables such as spectroscopic data, which are then used to obtain feedback on the validity
of the models by comparison of calculated observables to actual measurements on samples.
These methods are also used to explore the sensitivity of the calculated observables to model
details. Finally, the models are used to run simulations of the pyrolysis process under different
processing assumptions.

There have been a number of different two dimensional (2D) models put forth for kerogens?
as well as for asphaltenes.** The models are based on various experimental measurements.

However, there is very little in the literature on 3D models.’*

Obtaining validated 3D models is
a crucial step in determining the structure of these materials, understanding the chemical
nature of their interaction with the inorganic material, and calculating measurable properties of
this matter. Understanding these interactions is critical to the development of novel strategies

for efficiently separating the organic components from the inorganic matter.

The kerogen modeling work completed is based on Siskin’s 2D model for a Type | kerogen from
a Green River oil shale,” shown in Figure 1. Type | kerogens are those derived from marine
organisms having hydrogen to carbon (H/C) ratios of greater than 1.25 and oxygen to carbon
(O/C) ratios of less than 0.15. This model was constructed such that it can reproduce the
elemental analysis, the experimentally determined distribution of functional groups, and the
presence of structural features determined by various chemical treatments.

The work on asphaltenes was focused on the set of six 2D representative asphaltene structures
reported by Siskin et al." These 2D models were constructed using experimental data from
solid state >C NMR, elemental analysis, and X-ray photoelectron spectroscopy. These six 2D
structures are shown in Figure 2.



Figure 1: The 2D Siskin model of Green River kerogen. The model, composed of seven
fragments, has a total molecular formula of Cs47H1017N19017S4 and a molecular weight of
9438.35 dalton. This model provided the chemical structure and the starting point for the 3D
model developed in this project. From reference 2.



Campana Asphaltene Mid-Continent U. S. Asphaltene

Figure 2: The six 2D structures of asphaltenes used as the starting point for the 3D models
developed in this project. From reference 4.

Using the 3D models developed here, the *C NMR spectra, IR vibrational spectra, and the
atomic pairwise distribution functions (PDF) were calculated. The models have also been used
to run simulations of pyrolysis experiments.



Il. Computational Details

All the computational work was done using computer resources available at the Center for High
Performance Computing at the University of Utah. Programs used were HyperChem,” GAMESS,®
Gaussian09,” ReaxFF® and DISCUS (part of the DIFFUSE® suite of programs). HyperChem was
used for the molecular mechanic level calculations on the kerogen. ReaxFF, a reactive
molecular dynamics package with an associated reactive forcefield, was used for the pyrolysis
modeling. Both GAMESS and Gaussian09 were used for the ab initio level optimization
calculations; Gaussian09 was also used for the calculation of the NMR and IR spectra with the
final structures. DISCUS was used for the PDF simulations of the kerogen model structures.

lll. Modeling of Kerogen

The modeling of the kerogen was done by molecular mechanics (MM), using the MM+ force
field™ as implemented in HyperChem to generate an initial 3D structure. This modeling was
followed by further geometry optimizations at the ab inito level employing GAMESS for
restricted Hartree Fock (RHF) calculations with a minimal STO-3G basis set. This starting 3D
structure is shown in Figure 3.

This 3D STO-3G starting structure was subjected to a series of MM calculations using the
simulated annealing procedure in Hyperchem to find better energies and to evaluate the
diversity of possible structures within accessible energies at room temperature. The annealing
involves heating the starting structure to a simulation temperature of 1200K, allowing it to
evolve at this higher energy state for a set period of time, and then cooling it back to room
temperature (300K). This process was repeated multiple times to generate a set of five new
structures for our kerogen model. GAMESS was then used, again at the RHF/STO-3G level of
theory, to perform geometry optimizations on each of these five structures. The lowest energy
among these structures was then chosen as the new starting structure to repeat this process.
This cycle of generating several structures via simulated annealing and geometry optimization
to determine the lowest energy (most stable) structure was repeated four times, resulting in a
decrease in the energy of the structure from -28569.2846 Hartree to -28571.4952 Hartree, a
difference of 2.2106 Hartree or 1387 kcal/mol. These structures are presented in Figures 3 and
4 respectively.



Figure 3: Initial 3D model of the Green River kerogen Siskin model (1702 atoms). The atom
colors are: C-gray, O - red, N - blue, S - yellow, H - white. The tubes represent the molecule’s
backbone and the spheres represent the atoms. Total energy = -28569.2846 Hartree.

Figure 4: Lowest energy structure of kerogen model obtained by the four cycles of MM
simulated annealing followed by ab initio geometry optimization. The atom colors and molecule
description are the same as in Figure 3. Total energy = -28571.4952 Hartree.



This model, with 1702 atoms, is still considerably smaller than a “molecule” of kerogen and also
had a much lower density. Hence, larger, higher density models were built by considering the
structure in Figure 4 to be a monomer unit and using it to build larger models, including 2-, 3-,
4-, 5-, 6-, and 12-unit models. These larger models were needed to simulate the expected
atomic pairwise distribution functions. Higher density was obtained by confining these models
to a box and building the multi-unit structures to minimize any dead space. The 12-unit model,
with a density of 0.90 g/ml, is shown in Figure 5. For comparison, an experimentally measured
kerogen density is 0.95 g/ml .

Figure 5: Three dimensional structure of 12-unit kerogen model (greater than 20,000 atoms).
The atom colors and molecule description are the same as in Fig. 3.

IV: Modeling of Asphaltenes

The work done on the six asphaltene structures considered here included first building 3D
models using HyperChem, followed by performing molecular mechanic level optimizations, and
then using ab initio calculations (GAMESS, RHF with STO-3G basis sets) to further optimize the
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structures. Attention was paid to the flexible bridging groups between the aromatic and
aliphatic portions of the molecule present in each of the asphaltene structures as changes in
this portion of the structure greatly affected the energy (stability) of the system. The rotation
about these linkages was therefore explored to get the lowest energy structures, shown in
Figure 6. These structures were then used to explore the aggregation of asphaltene units,
which has been experimentally determined to occur,'! to look at the interaction between the
asphaltenes and a model inorganic matrix, and to predict the >C NMR and the IR spectra of the
different models.

It has been reported that these asphaltene units tend to aggregate as stacks as a result of
intermolecular forces between the units;llc therefore, calculations to determine the preferred
stacking orientation were performed in one of the asphaltenes (Campana model). The
calculations to study the packing were first done on stacks of three Campana units using

1*2 that

Gaussian09 at the Density Functional Theory (DFT) level using the new M06-2X functiona
was developed for the study of non-bonding interactions and the MIDI basis set. Three
different stacking patterns were studied: i) parallel or stacked one above each other, ii) anti-
parallel or stacked above each other but rotated 180° about the major plane of the asphaltene,
and iii) inverted or stacked above each other and rotated 180° about the other axis of the unit.
The parallel stack was found to be the lowest in energy; this makes sense at it is the orientation

that allows for the closest packing.
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Figure 6: Three dimensional models of asphaltenes. The atom colors are: C - gray, O - red, N -
blue, S - yellow, H — white



The lowest energy structure for each of these stacking patterns is shown in Figure 7; their
relative energy is given in Table 1. These energies can be compared to the energy of three
single Campana units which is -9750.2691 Hartree, i.e., three times the energy calculated for a
single unit optimized at the same level of theory (-3250.0897 Hartree). As this is a lower energy
than any of the stacks, these calculations do not support the experimental observation that
aggregation occurs due to intermolecular interactions stabilizing the structure. Note that the
Basis Set Superposition Error (BSSE)*?, while not considered here, will lead to an even lower
energy for the non-interacting configurations. Further calculations exploring other models,
other levels of theory, and/or stacking arrangements must still be completed.

Table 1: Energies of Campana asphaltene stacks

Asphaltene Stack Total Energy (Hartree) Relative Energy (kcal/mol)
Parallel -9750.2572 0
Anti-parallel -9750.2334 +14.9
Inverted -9750.2235 +21.1




Parallel

Anti-parallel

Figure 7: Lowest energy structures for the three types of stacking studied for the Campana
asphaltene.

V: Interaction with the Inorganic Matrix

The interaction of the six asphaltene model structures discussed above with an inorganic illite
matrix (aluminum silicate oxide clay) structure'® was studied at two different levels of theory
using Gaussian09. An example structure for the asphaltene illite is shown in Figure 8.

The calculations of the interaction between all six asphaltene structures and the illite matrix
were completed at the molecular mechanics level of theory using the Universal force field
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(UFF)," starting with the structures described above for the six different asphaltenes. The

change in the interaction energy as a function of the separation between the asphaltene and

the illite was studied, without allowing the structures of the illite or asphaltene to change. The

largest binding energies between the asphaltene and the illite, corresponding to the separation

with the minimum total energy, are reported in Table 2. These calculations were followed by

single—point PM6 semi-empirical calculations at the separation with the minimum UFF energy;

these binding energies are given in the last column of the table. Negative binding energies,

given in the last two columns, indicate that there is no binding between the asphaltene and the

illite, at least in the current calculations.

Table 2: Energy of interaction between the asphaltene and the illite®

Sum of Asphaltene
isolated andilliteat | UFF PM6
Asphaltene Asphaltene | minimum E | Binding Binding
alone Illite alone | and lllite separation Energy Energy
(kcal/mol) | (kcal/mol) | (kcal/mol) | (kcal/mol) (eV) (eV)
Campana 442.22 | 50464.45 52131.64 50906.67 -53.12 -0.88
Heavy Canadian 409.06 | 50464.45 52096.53 50873.51 -53.04 -0.13
Loydminster W. 320.21 | 50464.45 50762.53 50784.67 0.96 -1.10
Mid-Continent
us 385.42 | 50464.45 51430.84 50849.87 -25.19 -8.14
Maya 473.65 | 50464.45 52056.76 50938.10 -48.51 -0.82
San Joaquin
Valley 431.69 | 50464.45 50849.53 50896.15 2.02 -1.38

°All energies except for the last column refer to the calculations at the UFF level.
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Figure 8: Model of interaction between Campana asphaltene and lllite. The atom colors in the
asphaltene are: C - gray, O - red, N - blue, H— white; in the illite they are: Si — gray, O —red, H —
white, Al — pink, and K — purple.

VI: Calculation of Spectroscopic Data and Comparison to Experimental Results

One way to validate the model structures is to assess if molecular properties calculated with
the model reproduce the results of experimental measurements on the materials of interest.
The choice of molecular properties or observables that were chosen to be used was a function
of the reliability of the calculations to be able to accurately reproduce experimental
measurements, of the sensitivity of the observable to the 3D structure of the model, and on the
ability to be able to obtain experimental measurements of the observable on kerogen and
asphaltene samples.
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There exist theories that can be readily used to calculate both IR frequencies and NMR chemical
shifts, and they have been incorporated into many available software packages, including
Gaussian and GAMESS; the use of these calculations to understand and/or interpret atomic
level structure is routine. In addition, these are experimental techniques that are readily
available at the University of Utah and relatively easy to obtain on oil shale and oil sands
samples, on isolated kerogen and asphaltene, and on the products of pyrolysis experiments.
NMR chemical shift and IR frequencies are both sensitive to details about the chemical
environment such as functional groups present and neighboring atoms as well as to information
on intra- and inter-molecular interactions.

Small angle X-ray scattering (SAXS) can provide structural information at length scales ranging
from the angstrom to micrometer sizes, including information on particle shape and size,
particle size distribution, and pore size and distribution. Pairwise Distribution Functions (PDF)
measurements provide a plot of the structural information from the sample as a function of the
frequency of interatomic distances. Using available software, SAXS scattering curves and the
expected PDF profiles for the various models can be computed. In case of the PDF
measurement, this can be done using the DISCUS program available in the DIFFUSE package.’
For SAXS, the programs CRYSLOL'® or ORNL_SAS' are available to predict the scattering curves
given the atomic coordinates of the system. Both measurements can be accomplished at the
user facility at the Advanced Photon Source at Argonne National Laboratory.

3¢ NMR Spectra: The NMR calculations were done with the Gaussian09 program using the

PBE1PBE DFT functional and the 6-311G basis function on the minimum energy structures of
the six asphaltenes discussed above. The resultant *C chemical shielding values were
referenced to the TMS scale with the chemical shielding of CH, at the same level of theory and
the basis set being referenced to the known gas phase chemical shift of CH, of -7 ppm.'® The
calculated chemical shifts were then broadened (aliphatic with 2.5ppm, aromatic with 5ppm)
and plotted.

The plots of the spectra of all six of the asphaltenes are shown in Figure 9. The six spectra show
very distinct features, indicative of how sensitive NMR chemical shifts are to the differences in
the structural features of the models. In Figure 10 the calculated spectrum of the Mid-
Continent asphaltene is compared with the corresponding experimental solid state “*C
spectrum; this is the only asphaltene for which the experimental >C NMR spectrum has been
published.* However, from the analysis of the spectra presented in Siskin and Kelemen'’s
Energy & Fuels paper,4 it is expected that the six spectra will show marked differences. For
example, the analysis presented in the paper states that three of the asphaltenes (Mid-
Continent US, San Joaquin Valley, and Loydminster Wainwright) have 35-40% aromatic carbons
(chemical shifts between 90 and 165 ppm), whereas the other three (Campana, Maya, and

13



Heavy Canadian) have 45-50% aromatic carbons. Further analysis shows that the breakdown of
all aromatic carbons to those that are either protonated, bridgehead, or substituted by carbon
also varies greatly between the asphaltenes from the six different locations.

1=

Figure 9: Comparison of calculated >C NMR for the six different asphaltene models.
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Figure 10: Comparison of calculated and experimental >C NMR of mid-continent US
asphaltene.
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As mentioned earlier, asphaltenes are known to aggregate via stacking, and intermolecular
interactions can contribute to observed chemical shifts. Previously, optimized stacks of three of
the Campana asphaltenes in three different manners were obtained. The parallel stack was
determined to be the lowest energy of these three and therefore this stack was used for the
chemical shielding calculations. Figure 11 shows the comparison of the calculated *C NMR
chemical shifts for the single Campana unit and the parallel stack.

- 30
Stack Parallel - 25
Single
- 20 >
‘»
15§
£
- 10
-5
I 1 1 T T T 1 T T 0
200 180 160 140 120 100 80 0 40 20 0
Chemical Sh|6ft

Figure 11: Comparison of calculated >C NMR of single unit and the parallel stack (lowest E
stack) for model of Campana asphaltene.

The same NMR calculations were completed at the STO-3G basis set for the single unit kerogen
structure reported above; this spectrum is shown in Figure 12.
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Figure 12: Calculated >C NMR spectrum for kerogen based on single unit of kerogen model.

This calculated **C NMR spectrum of kerogen can be compared to the preliminary experimental
13C NMR spectrum obtained on the kerogen isolated from a section of the Skyline 16 core,
shown in Figure 13. The kerogen was isolated from the section of peak organic content in the
Mahogany zone.
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Figure 13: Experimental >C NMR spectrum from Skyline 16 core sample in Mahogany zone at
depth of 462-463 feet.

IR Vibrational Spectra: The vibrational frequencies, measured in wavenumber with the unit of
cm™, for the six different single molecule asphaltene models were also calculated and used to
provide simulations of the expected experimental IR spectra. The exact vibrational frequencies
observed depend on a complex relationship involving the strength of the bonding between
atoms, the symmetry of the system and the chemical environment about the involved atoms;
each vibrational frequency (there are 3N-6 fundamental vibrational frequencies for a molecule,
where N is the number of atoms in the system) involves a complex stretching and bending of
groups of atoms. For example, C-H stretches are observed in the range of 2850 to 3100 cm™;

only if there are protonated alkene or aromatic carbons will stretches be observed above 3000

cm™.

These calculations were completed on the same STO-3G optimized structures with Gaussian09
using the same functional mentioned above but at the smaller STO-3G basis set level. The
choice of a smaller basis set was dictated by the requirement that vibrational frequencies can
only be calculated on completely optimized geometries. The resulting calculated IR spectra are
shown in Figure 14 for two of the six asphaltenes. As can be seen from these spectra, IR is a

17



second spectroscopic method that is sensitive to changes in the model structure and that can
be used for validation of the models, as such experimental data becomes available.
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Figure 14: Calculated IR spectra of two model asphaltenes: Campana (right) and Mid-continent
Us (left)

PDF: PDF measurements provide a plot of the structural information from the sample as a
function of the frequency of interatomic distances. At the short range, the distances correlate
with the bond lengths or the separation of directly bonded atoms, but as the atomic separation
increases, the distances are a reflection of the dihedral angles in the sample. As with NMR and
IR spectra, simulations of the PDF profile expected for a given structural model can be
completed in order to evaluate the models. The calculation of the PDFs based on our 3D
kerogen models were completed using the DISCUS program. The resulting plots are shown in
Figure 15. The peaks at the small distances (labeled “Radius” in the figure) are consistent with
known C-H and C-C bond lengths and expected three atom separations for C-C-H and C-C-C
entities. The features at longer separations are due to four atom separations (defined by
dihedral angles) and other longer range separations — features that are very dependent on the
3D structure.
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Figure 15: Calculated PDF showing the interatomic distance distribution for the different sized
kerogen models.

VII: Pyrolysis modeling

Pyrolysis is a thermochemical decomposition of organic materials at elevated temperature in
the absence of oxygen. To analyze the pyrolysis products of asphaltenes, the Reactive Force
Field reactive molecular dynamics (ReaxFF MD) simulation was used.® The ReaxFF force field is
a bond order dependent force field that provides accurate descriptions of bond breaking and
bond formations, based on the calculation of the bond orders from interatomic distances at
each step of the molecular dynamics simulation. In this force field the valence interactions
(bond angle, torsion) and charge are allowed to change continuously as bonds form and break
in the reaction. The energy function for ReaxFF has the following form:
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Esystem =Ebond +Eover+Eunder+EvaI+Epen+Etor+ Econj"'Evdw'|'EcoIoumb

In the expression above, Epong denotes the bond energy, Eover and Eynger are the over- and under-
coordinated atom in the energy contribution and Eyai, Epen, Etors, Econj, Evaw, and Ecoulomb are the
valence angle term, penalty energy, torsion energy, conjugation effects to molecular energy,
nonbonded van der Waals interaction and Coulomb interaction, respectively.® When the
ReaxFF MD simulation is performed, the reactions that can occur include the cleavage of C-C, C-
O and C-N bonds to form smaller hydrocarbons, dehydrogenation to form two radicals (H and
remainder of molecule), and hydrogen abstraction.

The ReaxFF MD technique has been used to study reactivity (decomposition, combustion,
pyrolysis, chemisorption) in a wide range of systems including polymers,” explosives,? jet

21
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fuel,”! and nanoparticles.”> Most relative to the pyrolysis of the kerogen and asphaltenes are

two papers dealing with the pyrolysis of an aliphatic fossil organic biopolymer® and the

24
l.

maturation process in a Morwell Brown coal.”” With this literature in mind, this technique was

applied to the asphaltene systems.

A molecular dynamics (MD-NVT) simulation was first completed on a single asphaltene unit,
starting with the ab initio optimized structures discussed above. In an MD-NVT simulation, also
known as a constant temperature simulation, the number of atoms [N], the volume [V], and the
temperature [T] are kept constant. During the simulation, the energy of the exothermic and
endothermic processes is exchanged with a thermostat such as the Nose-Hoover thermostat,?
the Berendsen thermostat®® and the Langevin thermostat.’’ In these simulations, the
Berendsen thermostat was used. The box volume used for the simulations was 28x18x32 A%
temperatures ranged from 1000K and 3000K. The simulations were allowed to run for 50
picoseconds (ps). Because the simulation time in these types of simulations is many orders of
magnitude less than the times of experimental pyrolyses, the temperature used is much higher
than the actual experimental temperatures. However, even with these differences in the time
and temperature scale, the simulations have been shown to provide qualitative agreement with
experimental products.”

Figure 16 shows the results of the ReaxFF MD-NVT simulation, in terms of the number of
fragments versus the simulation time, for the pyrolysis of a single Campana asphaltene unit at
different temperatures. While the simulation was run starting from temperatures of 1000K, it
was found that for the timescale studied here, the decomposition of the molecule starts at
2000K. Therefore, Figure 16 presents the number of fragments obtained at the constant
temperatures of 2000K and above. From the figure it is clear that the trend is to produce more
fragments as the temperature is increased, as is expected. It should be noted that the pyrolysis
is a very dynamic process, with some bonds being broken and others forming over time.

20



35 -
30 -
25 -
(7,]
3
o | 000K
] 20 -
2 ——2250K
S 2500k
. l =TT T
S ——2750K
2 ——3000K
10 -
| r
57 | M
[ |
0 T T T T T 1
0 10 20 30 40 50 60

Time (Ps)

Figure 16: Results of NVT-MD simulation of a single Campana asphaltene unit at different
temperatures.

The same MD-NVT simulation was also performed on the different stacks of three Campana
asphaltene units, again starting from the ab initio optimized structures. The box size taken for
the parallel stack was 41x33x36 A, for the anti-parallel stack was 53x35x28 A%, and for the
inverted stack was 56x30x30 A®. The same plots for the number of fragments as a function of
the simulation time results at different temperatures for these three stacks are presented in
Figures 17, 18, and 19. The results for these three stacks of asphaltene show a similar trend to
the single Campana asphaltene unit: an increasing number of product molecules with
increasing temperature.
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Figure 17: Results of NVT-MD simulation of parallel stack of three Campana asphaltene units at
different temperatures.
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Figure 18: Results of NVT-MD simulation of anti-parallel stack of three Campana asphaltene
units at different temperatures.

22



70 7

===1750K
==2000K
===2250K
===2500K

Number of Molecules

===2750K
===3000K

60

Time (Ps)

Figure 19: Results of NVT-MD simulation of inverted stack of three Campana asphaltene units
at different temperatures.

The evolution of the molecular system as a function of the simulation time can also be
followed. This evolution is shown in Figure 20 for the single Campana asphaltene unit NVT-MD
simulation at 3000K where the starting atomic configuration and that after the 50 ps simulation
are both depicted. The decomposition initiates with the breaking of the C-O bond between the
aliphatic and the aromatic part of the molecule; the oxygen stays with the aliphatic part of the
molecule. This event is similar at all the temperatures that were studied. As the simulation
proceeds, the aliphatic part undergoes further decomposition to species of smaller molecular
mass. However, the exact way it decomposes is different at different temperatures. At
temperatures up to 2500K, the aromatic part of the molecule remains stable during the entire
simulation, whereas at higher temperatures, the aromatic part also undergoes decomposition
to produce smaller fragments with lower molecular mass. In the case of the stacks, the
decomposition pathways are similar to those of the single Campana unit, with the aromatic unit
remaining intact at lower temperatures and shorter time scales. The molecular formula of the
products obtained from MD-NVT simulations of a single Campana molecule and its parallel,
anti-parallel, and inverted stacks at 3000K are presented in Table 3.
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Figure 20: Optimized Campana asphaltene (left), which was the starting point for the ReaxFF
MD simulation, and fragments after ReaxFF pyrolysis simulation (right).
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Table 3: Molecular evolution from MD-NVT simulation of single
along with that for the three different stacks that were studied

Campana asphaltene unit,

Single Parallel Anti-parallel Inverted
Campana Stack Stack Stack
C41H27 3C2H4 3C3H5 C8H11
C5H5 5C2H3 2C4H7 C2HO
C2H5 C7H90 5C2H3 4C2H4
HN 8C2H2 C4H5 2C2H
0 3C3H4 2CO 5C2H2
C 2C3H3 2C5H7 C2H3
2C3H3 6CH3 C3H6 4CH3
5C2H3 C38H310 4C2H4 C4H5
CH3 6C2H 17C2H 2C6H9
C2H2 C32H20 C6H9 2C3H3
C5H9 C3 CH20 4CH20
C3H4 C2H2N 3CH3 3CH4
C2H C3H5N 9C2H2 C41H30N
CH20 CH30 C3H4 C42H28N
7H 2C4H2 C2HO C7H11
2H2 12H2 2C3H3 C42H27N
C4H7 4C2 4C4H6
H C3H 9H2
C7H12 3CH2 C3H2
C8H10 C7H5 H
CH40 C4H6 C5H8
H20 C3H2N co
C41H30 C6H10 2C5H7
H2N 6H2 C3H6
C4H6 C9H5
C2H20 C22H18N
Cc2 2C6H7
C3H6 C7H80
C6H8 C4H2
C4H3
CN
H
C2H5
C13H22
C2H20
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VIIl: Summary and Future Research

Starting with existing literature 2D atomic structures, 3D models have been established for both
a Green River kerogen and for a set of six asphaltene structures. The development of these 3D
models has allowed for the subsequent calculation of (1) a number of observables, namely *C
NMR chemical shifts, vibrational frequencies, and PDF curves, (2) asphaltene stacking and (3)
the interaction between the organic and inorganic components for asphaltenes.

These calculations have demonstrated:

1. The ability of modern computational chemistry tools to establish 3D atomic scale
models of complex materials and large systems such as kerogen.

2. The feasibility of calculating observables such as *>*C NMR chemical shifts, vibrational
frequencies, and PDF curves from these models.

3. The sensitivity of some of these observables (**C NMR chemical shifts, vibrational
frequencies) to structural differences between models.

4. The ability to simulate the pyrolysis process to gain information on the product
distribution using these models.

Unfortunately, for this report there was limited experimental data with which to compare
theoretical results. However, experimental data will soon be available with the recent (May
2010) acquisition of the Skyline 16 oil shale core from the Green River Formation in the Uinta
Basin. Participants on the Oil Sands/Qil Shale project have identified three initial one-foot
sections of interest from which to take samples. These three regions include two from the
organic-rich R-7 or Mahogany Zone (one at the peak richness and one at a slightly leaner point)
and a third from the upper R-6, which has an organic content similar to the leaner of the two
Mahogany Zone samples. Studies are underway on the shale from these regions and the
kerogen is currently being isolated from the shale. For oil sands, several potential asphaltenes
sources have been discussed, but nothing has yet been selected.

In addition, arrangements have been made to obtain both SAXS and PDF data at the Advanced
Photon Source at Argonne National Laboratory. The first visit to APS/ANL is scheduled for the
last week of March 2011. During this visit, SAXS and hopefully PDF data will be obtained on
both the raw oil shale and on the isolated kerogen. Once the isolated kerogen is obtained from
each of these regions, >C NMR spectra and IR spectra will be measured at the University of
Utah.  Subsequent to the identification of appropriate asphaltene samples, similar
measurements will be performed on those samples.
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Specific future goals include:

1.

Continued work on asphaltene stacking and interaction with the inorganic matrix.
Specifically, the lack of binding measured in the calculations completed to date for both
asphaltene stacking and asphaltene-illite interactions needs to be further explored to
determine if this is possibly due to insufficiencies in the level of theory used. In
addition, the mineralogical analyses being performed on the Skyline 16 core will provide
valuable information on other inorganic substrates to use in the modeling.

Continued exploration on the best theory possible in the calculations, especially those
used in the *C NMR chemical shift data and IR vibrational frequencies. It is well known
that larger basis sets provide more reliable values for both of these calculations;
however, the size of basis set that is feasible is limited by the large size of these systems,
especially that of the kerogen model.

Once more experimental data is obtained on the oil shale and kerogen isolated from the
shale, the agreement between the experimental data and that calculated using the
developed model can be better evaluated. This comparison will guide adjustments to
the model. For instance, some early *C NMR data supports a model with aromatic
clusters connected by aliphatic chains containing about twelve carbons with little
branching.

Expansion of the pyrolysis modeling to include simulations on the kerogen model, on
multiple asphaltene units, and on the models that include the inorganic substrate. These
results can then be compared to the product distribution obtained from the
experimental pyrolysis of both the oil shale and the isolated kerogen.

Extension of the kerogen modeling to other types/sources of kerogen (e.g., kurkersite),
possibly using existing literature data on these materials.
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