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Ionic Liquids and Their Potential as CO2 Sorbents

•
 

Pure salts that are liquid around ambient temperature
–

 

Not simple salts like alkali halides
•

 
Many favorable properties
–

 

Nonvolatile
–

 

Anhydrous
–

 

High thermal stability
–

 

Huge chemical diversity
–

 

High intrinsic CO2

 

solubility and selectivity
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Examples of cations Examples of anions



SO2 and CO2 solubility high…
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Anderson, Dixon and Brennecke, 
Acc. Chem. Res., 40, 12081208

 

(2007)

•
 

Process modeling indicates physical CO2

 

solubility still not 
high enough to be practical for post-combustion capture
–

 

Need to add chemical functionality to increase capacity

SO2

CO2 C2 H4

C2 H6 CH4 O2

N2



Adding reactive groups to ionic liquids increases capacity
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•
 

Build on aqueous amine chemistry:
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Problems with conventional TSILs

•
 

Liquid becomes extremely viscous upon CO2 contact 
•

 
2:1 mechanism is inefficient…1:1 mechanism possible?

•
 

How to tune the physical and chemical properties?

No CO2 17 mbar CO2
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Use molecular modeling + experiments to design ILs for CO2 capture



Explanation for viscosity increase
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A-C salt bridge

B-C salt bridge

Water A-C

Gutowski and Maginn, JACS 2008, 130, 14690

Atomistic MD simulations show an increase in viscosity upon 
reaction with CO2 just like experiments.

Why? Formation of a pervasive network of salt bridges 
between carbamate and ammonium / unreacted species.

Solution: 
design aprotic molecules that do not form salt bridges



Achieving 1:1 binding stoichiometry?
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Conventional primary amine chemistry requires two active 
groups for every one molecule of CO2

Is it possible to design molecules that bind CO2 1:1?



Optimal binding energy from process modeling
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Results from Trimeric Corp. 

Can ILs be designed with optimal CO2 reaction enthalpy?
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Approach: electronic structure calculationsApproach: electronic structure calculations
•

 

Evaluate structural and energetic properties of potential 
absorbents

•

 

Examine relative energies for different binding mechanisms

•

 

Investigate how substituent groups affect reaction enthalpy
–

 

Possible to computationally screen a huge number of candidates

•

 

Hybrid-DFT calculations implemented in Gaussian
–

 

B3LYP/6-311++G(d,p)
–

 

Harmonic frequency analysis
–

 

Standard ZPE and gas-phase free energy analysis 
–

 

Boltzmann averaged reaction energies

+ +

N

O



MEA vs. MEA vs. cationcation-- vs. anionvs. anion--tethered amines tethered amines 

•

 

Local cation tethering favors 2:1 binding
•

 

Local anion tethering disfavors 2:1 binding
•

 

Tethering ion and tethering point as important as functional 
groups in controlling CO2

 

reactions
–

 

DOF unique to ILs!!
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Mindrup and Schneider, ACS Symp. Series 2010

Maginn, Brennecke, Schneider and McCready 9th CCS May, 2010



1:1 stoichiometry for anion functionalized IL

•
 

Simulations predict 
prolinate

 
(–71 kJ mol–1) 

stronger 1:1 absorber 
then methionate

 
(–55)

•
 

Experimental RT 
isotherms consistent 
with this ranking and 
with ~1:1 reaction 
stoichiometry 

•
 

Excellent agreement 
with calorimetric 
experiments

Gurkan et al., JACS 2010, 132, 2116-2117
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In situ vibrational spectroscopy

•
 

IR distinguishes physically 
and chemically absorbed CO2

•
 

Confirms 1:1 reaction 
stoichiometry
–

 

Ammonium peaks absent
–

 

Carbamic acid peaks appear
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•
 

Calculations predict reversible carbamate formation
–

 

Tunable reaction energy
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–

Tuning reaction enthalpy using substituent groups



Putting it all together: solvent design targets

Design targets
•

 

Disrupt salt bridge network
–

 

Aprotic

 

base

•

 

Anion-functionalized IL
–

 

1:1 reaction stoichiometry

•

 

Tunable absorption energy
–

 

Choice of substituent groups

•

 

Clean, reversible kinetics

•

 

Aprotic

 

heterocyclic anions 
(“AHA”s)
–

 

Simple, tunable Lewis bases

N
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N
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N
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“Pyrazolide”US patent pending, University of Notre Dame
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Computed reaction enthalpy tracks experimental uptake 
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As predicted, little viscosity increase upon reaction

•
 

Modest viscosity change upon reaction!
•

 
Process simulations suggest substantial COE reduction 
relative to amines (see poster by Trimeric, #1291)

Molecular modeling 
shows that only cation- 
anion interactions are 
present; no salt 
bridges formed!



•

 

Ionic liquids a promising platform for chemically tailored gas 
separations

•

 

Molecular simulations have helped design a new class of reactive

 

ionic 
liquids that
–

 

Do not increase in viscosity upon reaction
–

 

Have desired 1:1 binding mechanism
–

 

Have tunable enthalpies of reaction for process optimization
•

 

In-house synthesis, characterization and testing capability
•

 

Many technical hurdles remain to be overcome
–

 

Run a lab scale demonstration unit
–

 

Additional testing, optimization and characterization

•
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ConclusionsConclusions
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