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Project Motivation

• CO2 capture has a significant compression penalty 

- as high as 8 to 12%.

• Final pressure around 1,500 to 2,200 psia for 

pipeline transport or re-injection.

• Based on a 400 MW coal plant, the typical flow rate 

is ~600,000 to 700,000 lbm/hr.

• Project goal: Double-digit reduction of compression 

power for CO2 capture

• Many thermodynamic processes studied.

• Several challenges with the application discussed.



Project Overview

• Phase I (Completed)

– Perform thermodynamic study to identify 

optimal compression schemes

• Phase II (Complete in 2010)

– Pilot testing of two concepts:  

• Isothermal compression (test underway)

• Liquid CO2 pumping (complete)
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DOE PC Reference Case

• Only CO2 stream considered

DOE/NETL report 401/110907



Proposed Solution for Optimal Efficiency

Optimal solution combines inter-stage cooling and a liquefaction approach.

Compression Technology Options for IGCC Waste 

Carbon Dioxide Streams
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Summary of Thermodynamic Analysis 

for IGCC Plant

Option Compression Technology

Power 

Requirements

% Diff from 

Option A Cooling Technology

A
Conventional Dresser-Rand 

Centrifugal 10-stage Compression 
23,251 BHP 0.00%

Air-cool streams between 

separate stages

B

Conventional Dresser-Rand 

Centrifugal 10-stage Compression 

with additional cooling

21,522 BHP -7.44%

Air-cool streams between 

separate stages using 

ASU cool N2 stream

C.1
Isothermal compression at 70 degF 

and 80% efficiency
14,840 BHP -36.17%

Tc = 70 degF inlet temp 

throughout

C.4
Semi-isothermal compression at 70 

degF, Pressure Ratio ~ 1.55

17,025 BHP 

(Required Cooling 

Power TBD)

-26.78%
Tc = 70degF in between 

each stage. 

C.7
Semi-isothermal compression at 

100 degF, Pressure Ratio ~ 1.55

17,979  BHP 

(Required Cooling 

Power TBD)

-22.67%
Tc = 100degF in between 

each stage. 



Summary of Thermodynamic Analysis 
for IGCC Plant Cont.

Option Compression Technology

Power 

Requirements

% Diff from 

Option A Cooling Technology

D.3
High ratio compression at 90% 

efficiency - no inter-stage cooling
34,192 BHP 47.06% Air cool at 2215 psia only

D.4

High ratio compression at 90% 

efficiency - intercooling on final 

compression stage

24,730 BHP 6.36%
Air cool at 220 and 2215 

psia

E.1

Centrifugal compression to 250 

psia, Liquid cryo-pump from 250-

2215 psia

16,198 BHP 

(Includes 7,814 

BHP for 

Refrigeration) 1

-30.33%

Air cool up to 250 psia, 

Refrigeration to reduce 

CO2 to -25degF to liquify

E.2

Centrifugal compression to 250 psia 

with semi-isothermal cooling at 100 

degF, Liquid cryo-pump from 250-

2215 psia

15,145 BHP 

(Includes 7,814 

BHP for 

Refrigeration) 1

-34.86%

Air cool up to 250 psia 

between centrifugal 

stages, Refrigeration to 

reduce CO2 to -25degF to 

liquify

Note:  Heat recovery not accounted for.



Summary of Thermodynamic Analysis

• Liquefaction process

– Utilize a refrigeration system to condense CO2

at 250 psig and -12ºF.

– Liquid then pumped from 250 to 2,200 psig.

– Requires significantly less power to pump 

liquid than to compress a gas.

– The cost of the refrigeration system must be 

accounted for.



Compression Power for PC Plant

Liquefaction/Pumping Compression
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Challenges:  High Reliability

• Integrally geared can achieve near 
isothermal compression 

• Can contain up to 12 bearings, 10 gas 
seals plus gearbox

• Typically driven by electric motor

• Impellers spin at different rates
– Maintain optimum flow coef.

Integrally Geared 

Isothermal Compressor

Single-Shaft Multi-stage 

Centrifugal Compressor

• Multi-stage centrifugal proven reliable and 

used in many critical service applications 

currently (oil refining, LNG production, etc.)

• Fewer bearings and seals 

– (4 brgs & seals for 2 body train)

• Can be direct driven by steam turbine

Courtesy of MAN

Courtesy of Dresser-Rand
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Project Goals

• Develop internally cooled  compressor stage 

that:

– Provides performance of an integrally geared 

compressor

– Has the reliability of a in-line centrifugal compressor

– Reduces the overall footprint of the package

– Has less pressure drop than a external intercooler

• Perform qualification testing of a refrigerated 

liquid CO2 pump



Southwest Research Institute

Phase 2 Project Plan

• Experimentally validate thermodynamic 

predictions.

• Two test programs envisaged:

– Liquid CO2 pumping loop

– Closed-loop CO2 compressor test with internal 

cooling

• Power savings will be quantified in both 

tests.
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Internally Cooled Compressor Concept

• Investigate an 

internally-cooled 

compressor concept.

– Red - CO2 flow path 

through compressor 

stage

– Blue - Liquid cooling in 

the diaphragm

– Grey - Solid

Courtesy of Dresser-Rand
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Conjugate Heat Transfer CFD Model

• Predicted temperature in return channel with 

and without internal cooling.

Without Heat Transfer With Heat Transfer



Final Design

Case 4- Conjugate heat transfer model with enhanced heat transfer coefficients 
to simulate ribbed surfaces for the cooling liquid



Final Design

Case 4 - Conjugate heat transfer model with enhanced heat transfer coefficients 
to simulate ribbed surfaces for the cooling liquid
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Test Rig Construction

Diffuser side of bulb

Main structural section (diffuser side)

Removable lid

Main structural section (return channel side)

Return channel side of bulb



Closed Loop Test Facility

• Driven by 700 hp electric motor 

through gearbox

• Torquemeter installed to 

measure power

• Loop rated to 300 psi suction 

and 500 psi discharge

• Test speeds up to 14,300 rpm

• Instrumentation measures:

– Total temperature and pressure at 

stage inlet and discharge 

– Total temperature and pressure at 

internal locations within the stage

– Flow rate, power, and speed

– Cooling water flow rate and delta-T

• Testing to begin later this 

month



Liquid CO2 Pumping Pilot Scale Testing

• Testing will measure pump efficiency 

• Validate pump design

• Measure NPSH requirements looking for signs of cavitation

• Cryostar will supply the pump 
– 250 KW, 100 gpm, 53,000 lbm/hr

Motor

Valve

GB CO2

Pump

Knock-out Drum

Tank



• Vessel layout showing 
elevated reservoir and 
knock-out drum

• Pump is mounted at 
ground level.  

• Orifice run located 
between pump and 
control valve (in 
supercritical regime)

Liquid CO2 Loop Design

Pump

Separator

Receiver



Loop Construction



Loop Completed



Data Acquisition Code



Test Results
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Test Results
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Dynamic Data – Design Point

Suction Dynamic Pressure

Casing Vibration - X

Casing Vibration - Y



Dynamic Data – Minimum Flow Point

Suction Dynamic Pressure

Casing Vibration - X

Casing Vibration - YSubsynchronous

Component



Dynamic Suction Pressure Waterfall while Throttling

Decreasing

Flow



Phase 2 Testing Summary

• Pump Testing
– Pump performed well matching the measured performance 

during factory testing on LN2

– Met discharge pressure goals

– LCO2 introduced no mechanical issues for the pump

– Vibration levels were reasonable

– A subsynchronous vibration occurred at minimum flow 
point but only at very low flow rates

• Compressor Testing
– Intercooled diaphragm designed and fabrication complete

– Internal instrumentation being installed

– Testing later this month

– Patent has been filed



Future Testing

• Pump Testing
– Perform testing at lower suction pressure

• Demonstrate performance of the pump over a wider operating range

– Will record performance, dynamic suction pressure, and 
vibration throughout test

• Compressor Testing
– Repeat tests at higher suction pressure

– Obtain heat transfer effectiveness at high Reynolds 
numbers



Questions???

www.swri.org

Dr. J. Jeffrey Moore

Southwest Research Institute

(210) 522-5812

Jeff.Moore@swri.org


