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Program Overview

•

 

Objective: Characterize and  predict performance and 
operational impacts of oxy-combustion retrofit designs on 
existing coal-fired boilers

•

 

Utilize multi-scale testing and theoretical investigations to 
develop:
–

 

Fundamental data that describe flame characteristics, waterwall 
corrosion, and ash properties (slagging, fouling) in oxy-firing

–

 

Validated mechanisms that describe impacts of oxy-combustion
–

 

Firing system principles (effects of oxy-burner design, flue-gas 
recycle)

•

 

Incorporate validated mechanisms into CFD models and 
evaluate full-scale oxy-retrofit designs
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Experimental Overview

•
 

100 kW Oxy-Fuel Combustor (OFC) Tests
–

 

Ash Characterization and Deposition
–

 

Soot Evolution

•
 

1.5 MW Pilot-Scale Furnace (L1500) Tests
–

 

Impacts of burner configuration on flame behavior
–

 

Heat Flux, Corrosion and Deposition
–

 

Flue Gas Chemistry

•
 

Bench-Scale Optical Entrained Flow Reactor
–

 

Char Oxidation Kinetics



REACTIONREACTION
ENGINEERINGENGINEERING

INTERNATIONALINTERNATIONAL

OCC1,Cottbus

Presentation Outline

•
 

Introduction
•

 
University of Utah’s 1.5 MW test furnace

•
 

Existing low-NOx

 

burner and modeling results
•

 
Motivation for new burner and design criteria

•
 

Oxy-research burner initial and final design 
configurations and modeling results

•
 

Oxy-research burner design specifics
•

 
Summary 



REACTIONREACTION
ENGINEERINGENGINEERING

INTERNATIONALINTERNATIONAL

OCC1,Cottbus

1.2 MW Pilot-Scale Furnace (L1500)

Air / FGR Train

Radiant Section

Convective Section

Sampling Ports

Burner

Convective and Radiant Sections

Unique L1500 Capabilities:

- Realistic Burner Turbulent Mixing Scale

- Realistic Radiative Conditions

- Realistic Time – Temperature History 
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1.2 MW Pilot-Scale Furnace Experiments

Experiments
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Existing Low-NOx

 

Burner (LNB)

•

 

Dual register low-NOx

 

burner

•

 

Designed for 1.5 MW firing 
rate
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Modeling Conditions for Existing LNB

LNB-A LNB-O

Firing Rate (MW) 1.02 1.02

Fuel Bit. Coal Bit. Coal

Oxidizer Air O2 + FGR

Burner SR 0.9 0.9

Total Coal Flow (kg/s) 0.03523 0.03523

Total Coal Flow (lb/hr) 279.6 279.6

Primary Gas / Fuel 1.8 1.8

Primary Velocity (m/s) 20.5 14.4

Primary Velocity (ft/s) 67.2 47.2

Primary Flow (kg/s) 0.06342 0.06342

Primary Flow (lb/hr) 503.3 503.3

Inner Sec. Flow (kg/s) 0.06007 0.06656

Inner Sec. Flow (lb/hr) 476.8 528.3

Outer Sec. Flow (lb/hr) 0.18022 0.19968

Outer Sec. Flow (lb/hr) 1430.3 1584.8

Primary Feed O2 (vol %) N/A 27.0%

Inner Sec. Feed O2 (vol %) N/A 27.0%

Outer Sec. Feed O2 (vol %) N/A 27.0%

Coal (As Fired)

C (wt%) 71.31%

H (wt%) 5.04%

O (wt%) 10.14%

N (wt%) 1.28%

S (wt%) 0.57%

Ash (wt%) 8.66%

Moisture (wt%) 3.00%

Volatiles (wt%) 40.47

HHV (J/kg) 29.09

HHV (Btu/lb) 12517

O2 Concentration in the 
Overall FGR/O2 mixture = 27% 

(vol)

Operating Conditions Utah Bituminous Coal

Primary velocity for oxy-fired 
conditions is near coal layout 

velocity
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Predicted Gas and Particle Temperatures for the 
LNB

Average gas temperature is 
slightly lower for oxy- 

combustion in the burner 
region
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Predicted Incident Heat Flux for the LNB
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Motivation for New Burner Design

•

 

Existing burner was designed for a 1.5 MW firing rate
–

 

Velocities are low for the oxy-fired conditions, depending on conditions 
chosen

–

 

Flame will be stable and attached, almost independent of operating 
conditions

•

 

Research burner must be able to handle various O2

 

and FGR 
mixtures in each register, along with targeted O2

 

injection in the 
primary and inner secondary

•

 

REI and Siemens have developed a oxy-coal research burner, 
based on an existing Siemens full-scale burner design
–

 

Research burner will be used to test general combustion principles 
under air and oxy-fired conditions, relevant to most wall fired boilers 
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Goal and Approach

Goal: Stabilized flame at quarl exit

Condition was quantified by predicting flue 
gas and particle temperatures using CFD

Various design iterations were evaluated 
until the result was achieved
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Initial Oxy-Research Burner (OXYI) Design 
Overview

The oxy-research burner was 
initially designed by constant 
velocity scaling of the existing 

Siemens burner design

Flow Divider
Throat

Primary

Front View

a Quarl Depth

b Divider Setback

c Burner Setback

Flow Divider

Primary

Throat

c

b

a

Burner 
RegisterFurnace

Direction of Gas Flow

Side View
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Comparison of Predicted Gas and Particle 
Temperatures for OXYI and LNB
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Comparison of Predicted Incident Heat Flux for 
OXYI and LNB
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Modifications to the Oxy-Coal Research Burner

•
 

Many iterations of redesign and modeling were 
performed ultimately resulting in the following 
modifications:

•
 

Primary was redesigned with:
–

 
15% reduction to the primary velocity

–
 

Concentric pipe for targeted oxygen injection

•
 

Quarl was lengthened

•
 

Burner setback was increased
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Final Oxy-Research Burner (OXYF) Design 
Overview

Primary Injector

Flow Divider
Throat

Primary

Nozzles for O2 injection in the 
inner secondary are included, but 
not shown here or modeled

a Quarl Depth

b Divider Setback

c Burner Setback

Front View
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c

b

a
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RegisterFurnace
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Modeling Comparison with Existing Burner
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Modeling Comparison with Existing Burner
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Comparison of Air-Firing (Existing Burner) and 
Oxy-Firing (Project Burner)
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Oxy-Coal Research Burner Configuration

Bluff Body Igniter Penetration

Inner Secondary Register

Swirl Adjustment

Outer Secondary Register

Burner Plate

Secondary Gas Supply
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Oxy-Coal Research Burner Configuration
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Oxy-Coal Research Burner Configuration

Primary O2 Injection

Inner Secondary

Outer Secondary

Quarl

Natural Gas 
Distributor

Flame Stabilization Tabs
Secondary O2 Injection
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Summary and Conclusions

•
 

Existing LNB was not ideal for our program
•

 
Flame stabilization location can be evaluated 
using particle temperature profiles

•
 

REI and Siemens have developed an oxy-
 research burner design that will provide

–
 

Ability to introduce O2

 

and FGR into any register of 
the burner, at any mixture

–
 

O2

 

injection in the Primary and Inner Secondary
–

 
Burner operating conditions → Flame behavior & 
Stabilization location
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•
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Intelligent Light’s FieldView software. Images By:



REACTIONREACTION
ENGINEERINGENGINEERING

INTERNATIONALINTERNATIONAL

Questions?


	Development of Oxy-Burner Retrofit Principles for Existing Coal-Fired Utility Boilers
	Presentation Outline
	Program Overview
	Experimental Overview
	Presentation Outline
	1.2 MW Pilot-Scale Furnace (L1500)
	1.2 MW Pilot-Scale Furnace Experiments
	Presentation Outline
	Existing Low-NOx Burner (LNB)
	Modeling Conditions for Existing LNB
	Predicted Gas and Particle Temperatures for the LNB
	Predicted Incident Heat Flux for the LNB
	Presentation Outline
	Motivation for New Burner Design
	Goal and Approach
	Presentation Outline
	Initial Oxy-Research Burner (OXYI) Design Overview
	Comparison of Predicted Gas and Particle Temperatures for OXYI and LNB
	Comparison of Predicted Incident Heat Flux for OXYI and LNB
	Modifications to the Oxy-Coal Research Burner
	Final Oxy-Research Burner (OXYF) Design Overview
	Modeling Comparison with Existing Burner
	Modeling Comparison with Existing Burner
	Comparison of Air-Firing (Existing Burner) and Oxy-Firing (Project Burner)
	Presentation Outline
	Oxy-Coal Research Burner Configuration
	Oxy-Coal Research Burner Configuration
	Oxy-Coal Research Burner Configuration
	Summary and Conclusions
	Acknowledgements
	Questions?

