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Background



Features of IVCAP
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 Low T/P stripping 

 at 2-8 psia, 50-70 0C, allowing use of low quality steam from power plant

 Energy use reduced by 20-30% compared to MEA-based processes

 Biocatalyst (Carbonic anhydrase) to promote absorption rate



Enzyme immobilization

Advantages:
 Improve enzyme stability 

 Reduce enzyme elution in a flow system

Support materials:Support materials:
 Macro-porous particles (e.g., Controlled pore glass (CPG), 100 nm 

pore, SA=25 m2/g, 200-400 mesh)

 Meso-porous particles (e.g., activated carbon, 40-60 mesh)

 Non-porous nanoparticles (e.g., silica)



Synthesis and characterization of silica nanoparticles



Synthesis of silica nanoparticles by flame spray pyrolysis (FSP)

Advantages:
 Easy to scale up
 Controlled sorbent properties (size, p p ( ,

composition, etc)
 Suitable for massive production
 Waste-free

Synthesis conditions:
 Precursor: TEOS 
 Solvent: Xylene
 Volumetric ratio of TEOS and xylene: 1:1
 Liquid feed rate: 1 ml/min

Schematic of FSP experimental set-up

 Dispersion gas:  O2 (4.46 l/min)
 Premixed combustion gas: O2 (0.42 

l/min) and CH4 (0.41 l/min)



Characterization of silica nanoparticles
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Preparation of immobilized enzymes



Procedure of CA immobilization onto silica nanoparticles
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Theory of enzymatic kinetics for CO2 absorption 

For pseudo-first order gas absorption in a stirred cell reactor:
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A stirred cell reactor for enzyme activity assay 
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Determination of optimal condition for SCA enzyme immobilization
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Evaluation of immobilized enzymes



Activity of SCA-SN under different pH and temperature conditions
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Stability of SCA-SN at 50 oC
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Conclusions

 Amorphous nonporous silica nanoparticles (25 nm) synthesized by an 
FSP method

 SCA successfully immobilized onto the FSP silica nanoparticles (49.4 mg 
SCA /g silica support)

 Kinetic parameters (kcat/km ) of immobilized enzymes determined using 
classic Danckwerts absorption theory with reaction

 Immobilized enzymes exhibited higher activities at the typical conditions 
of the IVCAP process.

 Immobilized enzymes exhibited significantly improved stability compared 
to their free counterpart. 
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