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Background



Features of IVCAP
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 Energy use reduced by 20-30% compared to MEA-based processes

 Biocatalyst (Carbonic anhydrase) to promote absorption rate



Enzyme immobilization

Advantages:
 Improve enzyme stability 

 Reduce enzyme elution in a flow system

Support materials:Support materials:
 Macro-porous particles (e.g., Controlled pore glass (CPG), 100 nm 

pore, SA=25 m2/g, 200-400 mesh)

 Meso-porous particles (e.g., activated carbon, 40-60 mesh)

 Non-porous nanoparticles (e.g., silica)



Synthesis and characterization of silica nanoparticles



Synthesis of silica nanoparticles by flame spray pyrolysis (FSP)

Advantages:
 Easy to scale up
 Controlled sorbent properties (size, p p ( ,

composition, etc)
 Suitable for massive production
 Waste-free

Synthesis conditions:
 Precursor: TEOS 
 Solvent: Xylene
 Volumetric ratio of TEOS and xylene: 1:1
 Liquid feed rate: 1 ml/min

Schematic of FSP experimental set-up

 Dispersion gas:  O2 (4.46 l/min)
 Premixed combustion gas: O2 (0.42 

l/min) and CH4 (0.41 l/min)



Characterization of silica nanoparticles
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Preparation of immobilized enzymes



Procedure of CA immobilization onto silica nanoparticles
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Theory of enzymatic kinetics for CO2 absorption 

For pseudo-first order gas absorption in a stirred cell reactor:
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A stirred cell reactor for enzyme activity assay 
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Determination of optimal condition for SCA enzyme immobilization
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Evaluation of immobilized enzymes



Activity of SCA-SN under different pH and temperature conditions
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Stability of SCA-SN at 50 oC
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Conclusions

 Amorphous nonporous silica nanoparticles (25 nm) synthesized by an 
FSP method

 SCA successfully immobilized onto the FSP silica nanoparticles (49.4 mg 
SCA /g silica support)

 Kinetic parameters (kcat/km ) of immobilized enzymes determined using 
classic Danckwerts absorption theory with reaction

 Immobilized enzymes exhibited higher activities at the typical conditions 
of the IVCAP process.

 Immobilized enzymes exhibited significantly improved stability compared 
to their free counterpart. 
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