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1. EXECUTIVE SUMMARY 

The objective of this study was to develop a reduced-order model (ROM) method that can be 
used in the risk assessment of geological carbon sequestration. In this context, the developed 
ROM does not have to be a simplification or reduction of a high-fidelity forward model. Instead, 
a response surface for the entire parameter space can be built based on a limited number of high-
fidelity forward simulations for selected parameter values. This response surface can then be 
used to approximate the model output for other parameter values. The focus of the ROM 
development of this work was within such a framework. The approaches considered included 
Gaussian process (GP) regression and radial basis functions (RBFs). An adaptive sampling 
scheme was included in the GP model to improve the accuracy of the ROM with fewer high-
fidelity evaluations. GP also has the advantage to provide an estimation uncertainty. Both 
algorithms were tested for example problems against a lookup table combined with linear 
interpolation. GP ROM performed better in most of the cases examined, but the accuracy of the 
model could be further improved. Both approaches (GP and RBF) were implemented into the 
inverse modeling framework iTOUGH2 (Finsterle, 2010) and could be used for sensitivity 
analysis and uncertainty quantification. 

The implemented GP was applied to approximate the pressure output at certain locations in a 
hypothetical CO2 storage project at the Kimberlina site (Zhou et al., 2011). High-fidelity forward 
simulations were conducted for a 50-year CO2 injection scenario, using a model initially 
developed in Birkholzer et al. (2010). Again, GP gave a better approximation than the lookup 
table with linear interpolation, especially when the number of high-fidelity simulations used to 
build ROMs or lookup tables was limited. At the current stage, the search of the samples for 
building the ROM in the adaptive sampling scheme is limited to the available forward 
simulations. As such, the full potential of an adaptive sampling scheme is not realized. As future 
work, the adaptive sampling scheme will be re-applied within the iTOUGH2 framework, and 
expect an even more accurate GP ROM. 
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2. INTRODUCTION 

The objective of this study is to develop a reduced order model (ROM) method based on a model 
input-output relationship. The developed ROM will be used in risk assessment of geological 
carbon sequestration where uncertainty quantification is needed. 

Subsurface model simulations are becoming more and more time-consuming due to increased 
complexity in the processes being considered and the fact that both small-scale and large-scale 
effects need to be accounted for in the same model. Moreover, sensitivity analysis, parameter 
estimation by inverse modeling, and uncertainty quantification require many such high-fidelity 
simulations, making the computational demands even more challenging if not prohibitive. One 
possibility is to use parallel computing. The other alternative is to approximate the high-fidelity 
model with a computationally much more efficient surrogate model, which is referred to as a 
reduced-order model (ROM). These ROMs can either be a simplification of the forward model 
or an approximation of the response surface where a simple input-output relationship is 
established (Razavi et al., 2012). Even when ROMs are used, parallel computing can still be 
useful in the high-fidelity simulations to construct the ROM when each high-fidelity simulation 
is very expensive.  

In this study, ROMs were developed based on the response surface method. Particularly, a 
number of forward simulations were run for selected parameter values, and building a 
relationship between input parameters and the output of interest, using two methodologies: 
Gaussian process (GP) regression (Rasmussen and Williams, 2006) and radial basis function 
(RBF) (Buhmann, 2003). This relationship was then used to approximate the model output for 
other parameter values and to perform the corresponding analysis, e.g., uncertainty 
quantification. 
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3. METHODOLOGY 

Two methods were implemented into iTOUGH2 (Finsterle, 2010) to approximate the response 
surface of a subsurface model: GP regression (Rasmussen and Williams, 2006) and RBF 
(Buhmann, 2003). These methods are described in the following sections. 

3.1 GAUSSIAN PROCESS REGRESSION 

The problem can be stated as follows: given a scalar function f(p), where p={p1, …, pn} is a 
parameter vector of length n, f(p) by g(p) can be approximated using only known solutions of 
f(p) for p in a sample set SN={q1, …, qN} of size N. A Gaussian process regression first assumes 
the relation between p and f(p) can be described by a Gaussian process characterized by its mean 
function, m(p), and covariance function, k(p, p’) (Rasmussen and William, 2006): 

 )]([)( pp fEm   (1) 
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For any given p, the GP regression procedure gives the expected value and variance of the 
approximating function g(p):  
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The isometric squared exponential (isoSE) function is the covariance function examined in this 
study: 
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In the above definitions, f and n are known as the hyperparameters. These are determined by 
maximizing the marginal Gaussian likelihood function, which is equivalent to minimizing the 
following negative log marginal likelihood (Rasmussen and William, 2006). 

 ))2log()log()(2/1())(log( πnKKfffP T  p     (7) 

This ROM was built based in part on the Gaussian Process Regression and Classification 
(GPML) Toolbox version 3.1 (http://gaussianprocess.org/gpml/code). However, the adaptive 
sampling scheme was developed to minimize the number of forward high-fidelity simulations 
needed to obtain a ROM with desired accuracy. The adaptive sampling scheme works as follows:  
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1. An initial ROM g1(p) is built using simulation at one selected parameter point or a set of 
parameter points (Sn) obtained through statistical methods 

2. An estimate en of the approximation error, g(p) -f(p), is determined and evaluated over a 
large sample set (SS) in the parameter space. This estimate should not require high 
fidelity simulations for this sample set 

3. The maximum error and the parameter point where this maximum error occurs are 
determined 

4. If the maximum error is less than the error tolerance specified, a ROM is obtained with 
the desired accuracy; otherwise a high-fidelity simulation is run at this parameter point, it 
is added to the sample set Sn and the above procedure is repeated until the approximation 
error is acceptable or number of sample points reaches the maximum allowable number. 

	
Figure 1: Flow diagram for the adaptive sampling procedure. Sn is the sample set evaluated 
by the high-fidelity model to build the ROM, SS is a set of potential sampling points in which 
to search for the parameter point with the largest estimated approximation error. 

3.2 RADIAL BASIS FUNCTION  

An RBF is a real-valued function whose value depends only on the distance from a point p' 
(Equation 8). In the context of a ROM, a radial basis function is used to interpolate among points 
where high-fidelity simulations are performed to approximate the response surface (Equation 9). 
RBF can have many different functional forms. The Gaussian function (Equation 10) was used to 
build a ROM for the Kimberlina site. More details can be found in Forrester and Keane (2009). 
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4. TEST PROBLEM 

4.1 PROBLEM DESCRIPTION 

The proposed GP approach was tested for a two-phase flow model developed by Finsterle and 
Pruess (1995). In order to determine the macro-permeability of crystalline rocks, starting on 
November 26, 1991, a series of ventilation tests was conducted at the Grimsel Rock Laboratory, 
Switzerland. The experimental site was located in mildly deformed granodiorite that was 
considered homogeneous on the scale of interest. A section of a tunnel of radius 1.75 m was 
sealed off and ventilated, causing the formation near the tunnel wall to partially dry out despite 
the fact that the tunnel is located far below the water table, where considerable hydrostatic 
pressures prevail. This dry-out occurs because the evaporation rate and vapor transport is higher 
than the flow rate with which liquid water converges towards the tunnel in this formation of very 
low permeability. Thermocouple psychrometer (TP) sensors were installed at six different depths 
to measure negative water potentials in the partially saturated region as a function of time. This 
analysis focuses on the water potential at 2 cm from the tunnel wall. The total moisture inflow to 
the tunnel was obtained from measurements of the moisture extracted from the circulated air in a 
cooling trap. These tests were interpreted using a two-phase, radial flow model implemented 
using TOUGH2 (Pruess et al., 1999); details of the model are described in Finsterle and Pruess 
(1995). In the model, the relative permeability function and capillary pressure function of van 
Genuchten were revised (Finsterle, 2007) for preventing capillary pressure from decreasing 
towards negative infinity as the effective saturation approaches zero. 

Three parameters are considered uncertain in the analysis: the logarithm of the absolute 
permeability, log(k), and the van Genuchten parameters n and log(1/α). The range of each 
parameter is [-19,-14], [2,3] and [5,6], respectively. Initially, the tunnel is dry, i.e., 100% gas 
saturation. The rest of the model domain is fully water saturated. As time goes on, liquid close to 
the tunnel (left side of the domain) evaporates into the tunnel due to reduced relative humidity 
maintained by ventilation; a drying front develops, propagating radially out from the tunnel wall. 
At the same time, the hydrostatic pressure in the far field (right side of the model domain) drives 
water towards the tunnel, which is fixed at atmospheric pressure. Results of these two competing 
processes are demonstrated in Figures 2 and 3, which show the liquid saturation of the model 
domain at 10 and 40 days, with n=2,  log(1/α)=6, and log(k)=-15 (Figure 2) and log(k)=-14.75 
(Figure 3). For the case with lower permeability, i.e., log(k)=-15, the evaporation front is able to 
propagate into the formation against the prevailing pressure gradient in the liquid phase. 
However, an increase in log(k) to -14.75 enables higher liquid flow towards and into the tunnel, 
which eventually leads to a resaturation of the formation, as shown in Figure 3. (Note that filling 
the tunnel with liquid water does not correspond to the actual test conditions, which included 
moisture removal from the sealed-off tunnel section). 

As a result of these two competing processes, the capillary pressure at 2 cm appears to be smooth 
for log(k) between [-19, -16], but shows a sudden change for log(k) between [-16, -14] (Figure 
4). This non-linear behavior makes it interesting and challenging for a ROM approximation. To 
investigate how ROM performance is affected by this sudden change in capillary pressure 
output, two cases were considered: one in which log(k) may vary between [-19, -16]; the other 
one in which log(k) may vary between [-19, -14]. 
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(a)      (b)  

Figure 2: Liquid saturation at (a) 10 days; and (b) 40 days for log(k)=-15, n=2 and  
log(1/α)=6. X is the radial distance to the tunnel. The first data point (red dot) shows the 
liquid saturation of the tunnel element. Interested model output is at X=1.77 m, 2cm away 
from the tunnel. 

	

(a)      (b)  

Figure 3: Liquid saturation at (a) 10 days; and (b) 40 days for log(k)=-14.75, n=2 and  
log(1/α)=6. X is the radial distance to the tunnel. The first data point (red dot) shows the 
liquid saturation of the tunnel element. Interested model output is at X=1.77 m, 2cm away 
from the tunnel. 

 

 
Figure 4: Capillary pressure at 2 cm from the tunnel as a function of the three parameters.	
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4.2 RESULTS AND DISCUSSION 

The relative error (Equation 11) is used to quantify the accuracy of the approximation:  

	
erel (p) 

| f (p)  g( p) |

| f (p) | 												 (11)	

for p within a test sample set (the search sample set, SS, was used), and to determine maximum, 
mean and standard deviation of  erel(p). To evaluate erel(p), f(p) for all p in SS needs to be 
evaluated 

For this test problem, the search sample set SS is 21  21  21 (i.e., 21 uniformly distributed 
samples for each parameter). The estimate en of the approximation error used in the adaptive 
sampling scheme is the predictive variance, given by Equation 5. The actual number of samples 
used to build the ROM is 27. The locations of these samples are shown in Figure 5. This number 
was chosen for the convenience of comparing results to a linear interpolation result using a 
tensor grid of 3  3  3. The comparisons of approximation errors for the two methods are shown 
in Tables 1 and 2. 

 

Figure 5: Samples used to build a GP-based ROM, selected by the adaptive sampling scheme 
based on predictive variance. 

	

Table 1: The approximation error for log(k) in the range [-19, -16] 

Approach erel(p) 

Maximum Mean Standard Deviation 

GP model 0.034 0.007 0.007 

Linear interpolation 0.091 0.016 0.017 

	

Table 2: The approximation error for log(k) in the range [-19, -14] 

Approach erel(p) 

Maximum Mean Standard Deviation 

GP model 0.95 0.32 0.25 

Linear interpolation 1.12 0.27 0.30 
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For this particular test problem, if the model output was smooth over the entire parameter space, 
the GP model showed a significantly better performance than linear interpolation; if the model 
output had a sudden change, the performance of the two approaches was approximately the 
same. Although the mean of the error was 0.27 using a linear interpolation, a little less than a GP 
model, the standard deviation was higher, which means a higher uncertainty.  

The deterioration of GP in the non-smooth case was partially due to the covariance function used 
(isoSE), which is not suitable for non-smooth functions. There are several potential solutions to 
improve the GP model performance. A different covariance function can be used, for example 
one where the hyperparameter is dependent on p (Plagemann, 2008). The accuracy can also be 
improved by determining the hyperparameters  using a different global optimization algorithm 
(currently, multistart steepest descent algorithm is used). A different error measure can also lead 
to a different performance. For example, instead of just using the variance as the error measure 
for selecting subsequent samples, an “approximate actual error”, e.g., obtained by comparing a 
ROM to a simplified model (e.g., a model with coarser grid), can be combined with the variance 
as the error measure. Finally, different ROM models can be used in different regions of the 
parameter space; partition of the parameter space can be guided by the physics of the modeled 
process. These approaches are currently under investigation. 

4.3 APPLICATION TO UNCERTAINTY QUANTIFICATION 

The purpose of developing such a ROM was to substitute a time-consuming high-fidelity model 
by a computationally much more efficient surrogate model in an inverse analysis or sampling-
based uncertainty quantification (UQ) analysis, where many forward model evaluations were 
needed.  A UQ based was implemented on ROM into iTOUGH2 and UQ performed for the same 
sample problem (log(k) in [-19, -16] was considered). Thirty samples were used to build this 
ROM. 

For comparison purposes, a UQ was also performed using the high-fidelity model (HFM). The 
Monte Carlo simulation was performed with a sampling size of 100 and 1000 for both the ROM 
and HFM. The mean and variance of the model output from each Monte Carlo simulation are 
listed in Table 3. 

	

Table 3: Comparison of UQ results between a HFM and its corresponding ROM 

 HFM-1000 ROM-1000 HFM-100 ROM-100 

Mean 1.11e6 1.15e6 1.14e6 1.17e6 

Standard deviation 2.4e5 2.4e5 2.3e5 2.3e5 

	

The ROM seems to be able to re-produce the standard deviation of the UQ analysis. The error of 
the mean estimation using the ROM was about 3%. For this particular example, 100 samples 
seem to be sufficient for uncertainty quantification. 

The histograms using 1000 samples are plotted in Figures 6 (a) and (b). The ROM appears to re-
produce the histogram of the model output relatively well. 
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                                                          (a)                                            (b) 

Figure 6: Histogram of the model output from the Monte Carlo simulation with 1000 
samples, using (a) HFM and (b) ROM. 
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5. APPLICATION TO KIMBERLINA SITE 

The developed ROM was applied to a hypothetical storage project at the Kimberlina site in the 
Southern San Joaquin Basin in California, where CO2 was assumed to be injected and stored. 
The ultimate goal was to be able (1) to predict the pressure and CO2 plume evolution at locations 
of interest (or anywhere in the field that may have leakage), and (2) to perform a prediction 
uncertainty analysis. A description of the forward model can be found in Birkholzer et al. (2010). 
The forward simulation was performed using the parallel version of TOUGH2: TOUGH-MP. A 
sensitivity analysis has been performed for nine input parameters (permeability, porosity and 
compressibility of three formations) and it was determined that three of them – permeability and 
porosity of the Vedder Sand (VS-k and VS-, respectively)  and permeability of the caprock 
(TF-k) – were the most sensitive parameters (Wainwright et al., 2012). Within the same work, an 
UQ was performed with 245 Monte Carlo realizations of these three parameters. This study used 
the existing available simulations as the search sample set Ss. The model output of interest was 
the pressure at a location 1.8 km updip from the injection location at 50 years.  

Both the GP and RBF method were applied and compared both to results obtained by linearly 
interpolation from a lookup table (which can be considered a ROM in itself). Three fixed sample 
sets Sn on a tensor grid were used to build lookup tables: 8 (2 x 2 x 2), 27 (3 x 3 x 3), 54 (6 x 3 x 
3) for VS-k x VS- x TF-k. The same samples were used to build both GP-and RBF-based 
ROMs. In addition, a GP model with the adaptive sampling procedure was built. However, since 
the search set was limited to the 245 available realizations, which were obtained through high-
fidelity TOUGH2-MP simulations, the potential of the adaptive sampling could not be fully 
realized; this compromise was referred to as “GP partially adaptive”. 

The sample set with 54 samples was given by Wainwright and Birkholzer (2012). The 27 sample 
set is a subset of those 54, in which VS-k took the first, fourth, and sixth of the samples in the 54 
sample set. The 8 sample set, a subset of the 27 sample set, takes the two bounding values of 
each parameter. The validation data used to calculate the error is the rest of the samples after 
exclusion of the samples used to build the ROM, i.e., if 27 samples are used to build the ROM or 
lookup table, the validation data set contains 245-27=218 samples.  

To compare these four methods (lookup table, GP with the same samples as lookup table, RBF 
with the same samples as the lookup table, and GP partially adaptive), the max., mean, and 
standard deviation of the relative error were calculated, which are listed in Table 4. The 
following observations were made: 

 When the sample size is small, GP gives a smaller mean and maximum approximation error, 
as well as a smaller standard deviation of this error, which implies a smaller uncertainty. 
Clearly, it performs better than RBF and lookup table. GP with partial adaptive sampling 
scheme is better than GP on a fixed grid. An even better performance could be achieved if 
the full adaptive scheme is applied. This assertion can be validated using iTOUGH2-PEST 
(Finsterle and Zhang, 2011) that has the adaptive sampling procedure implemented and has 
the capability to call TOUGH-MP (Zhang et al., 2008) through the PEST protocol (Doughty, 
2007). 

 When the sample size is large, the high density of interpolation points improves the 
performance of the lookup table. However, the performance of the GP model with the partial 
adaptive scheme deteriorates. Due to a lack of variation in the response surface, GP does not 
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require 54 samples. Instead, it leads to a covariance function that is poorly conditioned, 
leading to larger numerical error in the approximation. This further illustrates the advantage 
of using an adaptive sampling procedure that avoids unnecessary forward simulations, and 
that can intrinsically handle insensitive parameters. 

 RBF performs a little better than the lookup table (LUT) when the sample size is small, but 
not as good as the GP model in general. 

Table 4: Comparison of the relative error erel(p) between the ROMs/LUT and the HFM for 
different sample sizes 

Number of 
Samples 

ROM Type Max Mean Std Dev 

8 Lookup table  0.36 0.16 0.08 
GP fixed grid 0.29 0.12 0.07 
GP partially adaptive 0.24 0.08 0.06 
RBF fixed grid 0.38 0.13 0.08 

27 Lookup table  0.18 0.05 0.05 
GP fixed grid 0.13 0.03 0.03 
GP partially adaptive 0.11 0.04 0.03 
RBF fixed grid 0.19 0.04 0.04 

54 Lookup table  0.12 0.03 0.03 
GP fixed grid 0.13 0.03 0.02 
GP partially adaptive 0.17 0.03 0.03 
RBF fixed grid  0.23 0.09 0.05 

A ROM was built using 22 samples, where the corresponding lookup table was not from a tensor 
grid but based on a tetrahedral grid (unstructured grid) with triangulation (linear interpolation of 
the vertices of the triangulation) and the 22 samples were determined through the adaptive 
sampling procedure. It takes about 4 hours to run one forward simulation for the Kimberlina 
model with 64 K grid blocks to 100 years on a machine with 12 cores. For a ROM evaluation it 
takes seconds on a PC. For a large-scale simulation like Kimberlina, the computational saving is 
tremendous for a UQ or sensitivity analysis (SA). Figure 7 shows the relative error using both 
lookup table (blue line) and the GP partially adaptive model (red line). Clearly, the GP model 
performs much better for a non-tensor grid. 

 
Figure 7: The relative error from the validation data set using both lookup table (blue line) 
and the GP partially adaptive model (red line). 
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6. DISCUSSION AND FUTURE WORK 

6.1 IMPROVEMENT OF GP MODEL PERFORMANCE 

As discussed earlier, there are a few potential ways to improve the performance of a ROM based 
on GP regression: 

 Implement different covariance functions. There are many different covariance function 
formulations in the literature that model different forms of response surfaces.  These options 
will be implemented and their performance determined. In addition, an automated selection 
scheme will allow different covariance functions to be examined during the construction of 
the ROM. Performance of a covariance function can be determined through the leave one out 
validation (LOOV) procedure, thus avoiding the need for a large validation sample set.   

 A different type of global optimization algorithm (such as evolutionary algorithms or 
simulated annealing) may help to find hyperparameters that give a more accurate ROM.    

 A different estimate of the approximation error can be used for the adaptive sampling 
scheme. An example is that of a physics-based ROM, e.g., a coarser model can be used as 
another approximation of the model response. The difference between the two ROMs can be 
combined with the variance (current estimate of the approximation error) to select subsequent 
samples for updating the GP ROM. Alternatives for the physics-based ROM will be 
explored. 

 The parameter space can be subdivided into smaller domains, each with its own ROM. If 
within each domain the model output is smooth, the sample size for each ROM could be very 
small. As a result, this may have the potential of improving the efficiency of each ROM by 
reducing the number of samples needed for each ROM. To realize the full potential of this 
approach, the parameter space should not be partitioned randomly or even uniformly.  
Rather, it should be guided by the modeling process.   

6.2 LIMITATION OF CURRENT APPROACH 

In the current implementation of the ROMs, the approximation is done for one model output of 
interest, e.g., in the Kimberlina case, it is pressure at one point in space and time. However, if the 
location of interest is uncertain or if there are multiple points of interest (e.g., a potential leakage 
location, which could be anywhere in the model domain), an approximate solution would be 
needed for multiple points, or even for the entire model domain at multiple temporal points. For 
example, a total number of N pressure output in space and time, a total number of N ROMs will 
need to be built. If it takes Mi (i = 1, N) HFM simulations to build the ith ROM with a pre-
specified accuracy, the maximum total number of HFM simulations is ∑ . This can be a large 
computational effort and as such this is a limitation of the current approach. However, the actual 
number of necessary simulations may be much less since some of the HFM simulations may be 
used in multiple ROM constructions. It may even be possible to have one limited set of samples, 
and to construct the multiple ROMs using this same set of samples. An approach that 
reconstructs the field solution by evaluating on M ROMs, where M <<N, is currently being 
investigating. This investigation includes coupling the ROMs based on response surface 
approach with function approximation methods such as empirical interpolation method and 
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proper orthogonal decomposition, and consideration of various spatial and temporal locations as 
additional parameters for GP approximation. 

6.3 OTHER ROM APPROACHES 

Fuzzy logic may be considered to approximate the model response. The basic idea for such a 
method is that, based on limited simulations, model responses can be divided into regions so 
within each region the model output changes smoothly; a set of rules can be generated for each 
region and used as an approximation.   

6.4 NEXT STEP 

Our next efforts will focus on limitations of the current approach. More specifically, for the 
Kimberlina site, (1) a full adaptive sampling scheme will be applied to improve GP model 
performance; and (2) an approach will be developed that requires minimum effort to 
approximate the entire field solution. 
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