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Coal Direct Chemical Looping Retrofit to Pulverized 
Coal Power Plants for In-Situ CO2 Capture

• Period of Performance: 2009-2012

• Total Funding ($3.98 million):
• U.S. Department of Energy, National Energy Technology Laboratory ($2.86 million)

• Ohio Coal Development Office ($300,000)

• The Ohio State University ($487,000)

• Industrial Partners ($639,000)

• Major Tasks:
• Phase I: Selection of iron-based oxygen carrier particle

• Phase II: Demonstration of fuel reactor (coal char and volatile conversion) at 2.5 kWt scale and 
cold flow model study

• Phase III: Demonstration of integrated CDCL system at 25 kWt scale and techno-economic 
analysis of CDCL process

http://www.consolenergy.com/default.aspx�


CDCL Process Concept

Reducer: Coal + Fe2O3 →  Fe/FeO + CO2 + H2O   (endothermic)

Oxidizer: Air + Fe/FeO →  Fe2O3 + Spent Air       (exothermic)

Overall: Coal + Air  →  CO2 + H2O + Spent Air    (exothermic)

Reducer/
Fuel Reactor

Oxidizer/
Air Reactor

Fe2O3

Fe/FeO

CO2, H2O

Coal

Enhancer Gas

Spent Air
for Power Generation

Air

CDCL Process reduces exergy loss by 
recuperating the low grade heat while 
producing a larger amount of high grade 
heat



Modes of CFB Chemical Looping Reactor Systems
Mode 1- reducer: fluidized bed or co-current  
gas-solid  (OC) flows

Mode 2 - reducer: gas-solid (OC) counter-
current dense phase/moving bed flows
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Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping 
Using Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (2010, priority  date 2003)
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Coal-Direct Chemical Looping Process for Electricity 
Generation or Electricity and Hydrogen Co-generation
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Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping Using 
Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (2010, priority  date 2003)
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Comparison Among Gaseous Chemical Looping, Direct Coal Chemical 
Looping and Traditional Coal to Hydrogen/Electricity Processes

Assumptions used are similar to those adopted by the USDOE baseline studies. 



Scope - Technical Status Report 

1. Particles/TGA/Fixed Bed Reactivity 
Experiments

2. CDCL Moving Bed Reactor Configuration

3. Bench Moving Bed Studies of Stages I 
and II Reactions

4. Data Analysis

5. CDCL Scale-Up to 25KWth Unit

6. Net Power Calculation

7. Phase III Work



1. Oxygen Carrier Particle Development 
Selection of Primary Metal

Primary Metal Fe Ni Cu Mn Co

Support Materials Al2O3, SiO2, MgAl2O4, TiO2, Bentonite, etc

Cost + – – ~ –

Oxygen Capacity1(wt %) 30 21 20 253 21

Thermodynamics for 
CLC

+ ~ + + +

Kinetics/Reactivity2 – + + + –

Melting Points + ~ – + +

Strength + – ~ ~ ~

Environmental& Health ~ – – ~ –

Hydrogen Production + – – – –
1. Maximum theoretical oxygen carrying capacity; 2. Reactivity with CH4; 3. Mn3O4 is the highest oxidation state based on 
thermodynamics, although not thermodynamically favorable, Mn is assumed to be the lowest oxidation state 



1. Oxygen Carrier (OC) Particle Development (cont.) 
OC (over 150 particles) Performance with Volatile

High Reactivity High Carbon Deposition Tolerance

High Recyclability High Pellet Strength
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1. Oxygen Carrier Particle Development (cont.) 
Direct Reaction between OC and Char

• OC/Char = 5~10

• Temperature
– 25°C to 250°C
– 250°C for Drying
– 250°C to 900°C

• Less than 2 wt.% Loss

Slow solid-solid reaction between OC and char is slow.
Enhancement is needed.



• Char and OC in He
• Reaction Initiated at 400-450°C
• Max. Intensity at 900°C
• CO2 Formation Observation
• Enhanced Reaction at Higher T

1. Oxygen Carrier Particle Development (cont.) 
Enhancement of Char Conversion

TGA-FTIR Coupling
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• Gas Analysis
• ~22 vol.% Initial CO2
• Slow Char Conversion w/o OC
• ~70 min. for  PRB Char Conversion



1. Oxygen Carrier Particle Development (cont.) 
Ash Study
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•Effect of OC on bituminous coal ash 
deforming temp. is minimal.
•Useful Data for combustor operation & 
Ash separation
•Effect of ash on the reactivity and 
recyclability of oxygen carriers



1. Oxygen Carrier Particle Development (cont.) 
Effect of Sulfur

1 1
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No H2S H2S

Effect of sulfur on the time of reduction for 
oxygen carrier particles

XRD results shows the formation of Fe0.877S 
after reduction



2. CDCL Moving Bed Reactor Configuration

Two-stage moving bed
– Stage I for gaseous volatiles

– Stage II for coal char

Coal

Char gasification and 
particle reduction:

FeO + H2 Fe + H2O
FeO + CO  Fe + CO2

CO2 + C  2CO

Fe2O3

Coal devolatilisation:
Coal → C + CxHy

Particle reduction :
CH4 + Fe2O3 → CO2 + 

H2O + FeO

Fe

CO2 + H2O

Enhancing gas

Reaction Initiation:
H2 + FeO Fe + H2O
H2O + C → CO + H2

Coal

Stage II

Enhancing Gas FeO/Fe

Fe2O3CO2/H2O

Stage I

Thomas, T., L.-S. Fan, P. Gupta, and L. G. 
Velazquez-Vargas, “Combustion Looping Using 
Composite Oxygen Carriers” U.S. Patent No. 
7,767,191 (2010, priority  date 2003)



Countercurrent 
Moving Bed

FeOx+Char

Fe/FeO

CO2+H2O

CO2/H2O

2. CDCL Moving Bed Reactor (cont.) 
Stage II Configuration



3. Bench Scale Testing
Stage I Test: Volatile Conversion

• Iron catalysts have the capability to crack volatiles to methane1

• Methane is the most stable volatile2

• Moving bed reactor for gas solid reaction study

Light In Light Out

Gas In

Gas Out

Gas / solid

Sample 
Out

Temperature 
Measurement

Motor

Motor

1. Simell, P. A., et al, "Catalytic Purification of Tarry Fuel Gas with Carbonate Rocks and Ferrous Materials," Fuel, 71(2), 211-218 (1992).
2. Gueret, C., M. Daroux, and F. Billaud, "Methane Pyrolysis: Thermodynamics," Chemical Engineering Science, 52(5), 815-827 (1997).
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of CH4 achieved

Syngas, Methane, and Other Hydrocarbons can be Fully Converted to CO2
and H2O in Stage I

3. Bench Scale Testing (cont.) 
Stage I Test: Volatile Conversion



• 2.5kWth Capacity

• Bituminous Char Used
– Low volatiles (2.89%)

– High Carbon (84.4%)

• Gasification Enhancer
– CO2

– H2O

• Reaction Temperature Range: 950-
1050°C

• Analysis Methods
– Outlet Flowrate 

• C (Solid) → CO2 + CO + CH4(Gas)

• Inlet Flow < Outlet Flow

– Gas Chromatogram (GC)
• Gas Sampling at Ports

3. Bench Scale Testing (cont.) 
Stage II Test: Char Conversion



97% Char conversion with H2O as gasification enhancer.

3. Bench Scale Testing (cont.) 
Stage II Test: Char Conversion
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4. Data Analysis
Oxygen Carrier Particle Reduction Kinetics

– Three-interface Unreacted shrinking 
core model (USCM) *

• Diffusion through the gas film

• Intraparticle diffusion

• Chemical reaction at reaction interface, first 
order reversible reaction

• Isothermal and isobaric conditions 

• The pellet volume is unchanged 

Gas film

Yanagiya T., Yagi J., Omori Y. 1979 reduction of iron oxide pellets in moving bed. Ironmaking and steelmaking, No.3 93-100
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• Assumptions:
– Both gas and solid streams are in plug flow.

– Three-interface USCM for representing the overall reaction rate of the pellet

– Negligible temperature difference between gas and solid.

• Governing Equations
– Ci: CO, CO2, H2, H2O

– Ei: Fe2O3,Fe3O4,FeO,Fe

• Numerical Methods
– Both temporal and spatial terms are discretized by fifth order schemes

– Executed in Fortran

• The overall fraction reduction could be expressed as 
follows

– conversion of reaction from Fe2O3 to Fe3O4

– conversion of reaction from Fe3O4 to Fe0.952O

– conversion of reaction from Fe0.952O to Fe

4. Data Analysis (cont.) 
Stage I Modeling: Volatile Conversion
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• Cold Flow Model Study
– Feasibility of Reactor Design

– Hydrodynamic Study of OC, 
Coal and Ash

– OC/Coal Residence Time

– Coal Injection Study

– Fine Removal Device

5. CDCL Scale-Up to 25KWth Unit 



Systems Analysis Methodology
• Performance of CDCL plant modeled using Aspen Plus software

• Results compared with performance of conventional pulverized coal (PC) power plants with 
and without CO2 capture

• U.S. Department of Energy, National Energy Technology Laboratory; Cost and Performance Baseline 
for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (November 2010)

• Case 9 – Subcritical PC plant without CO2 capture
(“Base Case”)

• Case 10 – Subcritical PC plant with MEA scrubbing system for post-combustion CO2 capture 
(“MEA Case”)

• All plants evaluated using a common design basis
• 550 MWe net electric output

• Illinois No. 6 coal (11,666 Btu/lb HHV, 2.5% sulfur, 11.1% moisture as received)

• Subcritical steam cycle: 2,400 psig/1,050°F/1,050°F (166 bar/566°C/566°C)

• ≥ 90% CO2 capture efficiency (MEA and CDCL Cases)

• CO2 compressed to 2,215 psia (153 bar)

• Results are preliminary, will be used to guide further design improvements

6. Process Simulation and Analysis



6. Process Simulation and Analysis (cont.)

Fabric 
Filter

Wet
FGD

Fuel 
Reactor

Air 
ReactorPulverizer

CO2
Compressor

Recycle Air 
Boost 

Compressor

Gas
Turbine

Coal

Fe/FeO

Spent Air 
+ Fe2O3

Carrier Particle 
Makeup (Fe2O3)

Spent Air 
Recycle

Air

LP Air 
Compressor

HP Air 
Compressor

Enhancer Gas Boost 
Compressor

CO2
Purification/

Drying

CO2
Product

Lockhoppers

Cyclone 1

Cyclone 2

Ash / Carrier 
Particle Fines to 
Disposal

Clean
Spent 
Air to 
Stack

Lockhopper
Enhancer Gas 
(CO2 + H2O)

CO2 + 
H2O

Fe2O3

Indicates heat is recovered for 
steam cycle

15°C
1 bar
210,118 kg/h

153 bar

12.6 bar

15°C
1 bar

12.6 bar

188°C

850°C
12 bar

1 barID
Fan

1183°C

1195°C

1000°C

850°C

~12 bar

~12 bar



Base
Plant

MEA
Plant

CDCL
Plant

Coal Feed, kg/h (lb/h)
198,391

(437,378)
278,956

(614,994)
210,118

(463,231)

CO2 Emissions, kg/MWhnet (lb/MWhnet)
856

(1,888)
121

(266)
~0

(~0)

CO2 Capture Efficiency, % 0 90 ~100

Solid Waste,a kg/MWhnet (lb/MWhnet)
35

(77)
49

(108)
39

(87)

Net Power Output, MWe 550 550 550

Net Plant HHV Heat Rate, kJ/kWh 
(Btu/kWh)

9,788
(9,277)

13,764
(13,046)

10,357
(9,817)

Net Plant HHV Efficiency, % 36.8 26.2 34.8

Energy Penalty,b % - 29 5

Aspen Plus® Modeling Results 

aExcludes gypsum from wet FGD.  bRelative to Base Plant; includes energy for CO2 compression.



7. Accomplishments / Phase III Plans
• Completed synthesis / screening of >150 oxygen carrier particles and 

selected particles with optimal performance for further testing

• Demonstrated >99% conversion of CH4 (volatiles) at 2.5 kWt scale

• Demonstrated 90-95% conversion of coal char at 2.5 kWt scale using 
enhancer gas (CO2 & H20)

• Performed cold flow modeling to demonstrate and evaluate solids 
handling

• Plans for Phase III (2011.8 -2012.8)

Phase III

Task 1 2 3 4 5 6 7 8 9 10 11 12

Subtask 8.2: Sub-pilot Scale CDCL System Construction and Shakedown

Milestone - Proof-of-concept Scale Reactor

Task 9.0: Integrated System Performance

Subtask 9.1: Continuous in-situ CO2 Capture

Milestone - continuous operation of Unit

Task 10.0: Techno-Economic Analysis performed by CONSOL

Milestone - Techno -economic Analysis Report



Thanks
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