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Coal Direct Chemical Looping Retrofit to Pulverized
Coal Power Plants for In-Situ CO, Capture

Period of Performance: 2009-2012

Total Funding ($3.98 million):
e U.S. Department of Energy, National Energy Technology Laboratory (52.86 million)
e Ohio Coal Development Office ($5300,000)
* The Ohio State University (5487,000)
* |Industrial Partners (5639,000)

Major Tasks:
* Phase I: Selection of iron-based oxygen carrier particle
e Phase ll: Demonstration of fuel reactor (coal char and volatile conversion) at 2.5 kW, scale and
cold flow model study
e Phase lll: Demonstration of integrated CDCL system at 25 kW, scale and techno-economic
analysis of CDCL process

AMERICA’S EMERGY STARTS HERE.
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CDCL Process Concept

Electric power
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Modes of CFB Chemical Looping Reactor Systems

Mode 1- reducer: fluidized bed or co-current
gas-solid (OC) flows
——> combustor gas

Mode 2 - reducer: gas-solid (OC) counter-
current dense phase/moving bed flows
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Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping
Using Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (2010, priority date 2003)
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Coal-Direct Chemical Looping Process for Electricity
Generation or Electricity and Hydrogen Co-generation
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Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping Using
Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (2010, priority date 2003)



Comparison Among Gaseous Chemical Looping, Direct Coal Chemical
Looping and Traditional Coal to Hydrogen/Electricity Processes
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Scope - Technical Status Report

Particles/TGA/Fixed Bed Reactivity
Experiments

2. CDCL Moving Bed Reactor Configuration

3. Bench Moving Bed Studies of Stages |

N o Uk

and Il Reactions

Data Analysis

CDCL Scale-Up to 25KWth Unit
Net Power Calculation

Phase Il Work



1. Oxygen Carrier Particle Development
Selection of Primary Metal

Primary Metal Fe NI Cu Mn Co
Support Materials Al,O,, SIO,, MgAl,O,, TiO,, Bentonite, etc
Cost + — _ ~ _
Oxygen Capacity*(wt %) |30 21 20 253 21
Thermodynamics for + ~ + + +
CLC

Kinetics/Reactivity? - + + + _
Melting Points + ~ - + +
Strength + — ~ ~ ~
Environmental& Health |~ - — ~ _
Hydrogen Production + — — _ _

1. Maximum theoretical oxygen carrying capacity; 2. Reactivity with CH,; 3. Mn;0, is the highest oxidation state based on

thermodynamics, although not thermodynamically favorable, Mn is assumed to be the lowest oxidation state




g Capacity (%)

1. Oxygen Carrier (OC) Particle Development (cont.)

OC (over 150 particles) Performance with Volatile
High Carbon Deposition Tolerance
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1. Oxygen Carrier Particle Development (cont.)
Direct Reaction between OC and Char

e OC/Char=5~10

* Temperature
— 25°Cto 250°C 2
— 250°C for Drying <
— 250°Cto 900°C

* Less than 2 wt.% Loss
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Slow solid-solid reaction between OC and char is slow.

Enhancement is needed.



1. Oxygen Carrier Particle Development (cont.) OSE%‘;E)

Enhancement of Char Conversion

TGA-FTIR Coupling

UNIVERSITY

Fixed Bed Experiment
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e Gas Analysis

e ~22 vol.% Initial CO,

* Slow Char Conversion w/o OC

e ~70 min. for PRB Char Conversion



1. Oxygen Carrier Particle Development (cont.) E)EITCE
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1. Oxygen Carrier Particle Development (cont.)
Effect of Sulfur
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Effect of sulfur on the time of reduction for
oxygen carrier particles

Lin (Counts) R

XRD results shows the formation of Fe;¢,,S
after reduction



2. CDCL Moving Bed Reactor Configuration

Fe,0, —— — CO, +H,0
IR R
oM. 1 Fe,0, i
o Particle reduction :
CH, + Fe,0, > CO, +
ol Stag e | J H,O + FeO
> Coal devolatilisation:
Coal . Coal 5 C+CH,
_J
Stag e ll A Char gasification and
. particle reduction:
FeO +H, = Fe + H,0
FeO + CO - Fe + CO,
< CO,+C > 2CO
> Reaction Initiation:
H, + FeO-> Fe + H,0
/ H,0+C->CO+H,
Enhancing Gas I 1 FeO/Fe 1
Fe < Enhancing gas
Thomas, T., L.-S. Fan, P. Gupta, and L. G. Two-stage moving bed
Velazquez-Vargas, “Combustion Looping Using .
Composite Oxygen Carriers” U.S. Patent No. — Stage | for §aSE0oUs volatiles

7,767,191 (2010, priority date 2003) — Stagel for coal char



2. CDCL Moving Bed Reactor (cont.)
Stage Il Configuration

e
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3. Bench Scale Testing
Stage | Test: Volatile Conversion

* Iron catalysts have the capability to crack volatiles to methane?
* Methane is the most stable volatile?
* Moving bed reactor for gas solid reaction study
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1. Simell, P. A,, et al, "Catalytic Purification of Tarry Fuel Gas with Carbonate Rocks and Ferrous Materials,” Fuel, 71(2), 211-218 (1992).
2. Gueret, C., M. Daroux, and F. Billaud, "Methane Pyrolysis: Thermodynamics,” Chemical Engineering Science, 52(5), 815-827 (1997).
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%gm Stage | Test: Volatile Conversion
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3. Bench Scale Testing (cont.)
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Stage Il Test: Char Conversion
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Analysis Methods

— Outlet Flowrate
e C(Solid) - CO, + CO + CH,(Gas)
* Inlet Flow < Outlet Flow

— Gas Chromatogram (GC)

e Gas Sampling at Ports
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3. Bench Scale Testing (cont.) STATE
Stage Il Test: Char Conversion
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4. Data Analysis
Oxygen Carrier Particle Reduction Kinetics

. - 1. Gas film
— Three-interface Unreacted shrinking PP T ~<

core model (USCM) * Re
e Diffusion through the gas film /

~

* Intraparticle diffusion I

* Chemical reaction at reaction interface, first | Iron
order reversible reaction \

* |sothermal and isobaric conditions \ :
\ Hematite y

* The pellet volume is unchanged AN ’

\—__—’

i :L{AS(AZ+BZ+83+F>+(A2+Bz)(Ba+F)<y—yf) }

R @ _[A3(82+Bs+F)+Bz(Bs+F)](y_yz*)_Az(Bs"'F)(y_ya*) 1 1 _ (1_ R2)1/3_(1_ R1)1/3 dp

1-R)* Kk (1+1/K,) 1T 1-R)P(-R,)" 2D,

A:

P {[(A+B+B)(A3+B+F>+A3(B+F>](y Y) }

* RTo|-[B,(A,+B,+F)+A(B,+F)l(y-y,)-(A+B)B,+F)(y-vy;)] B,

B {[(AﬁBl)(Az+Bz+BS+F)+A2(BZ+BP,+F)](y—y3)}

RTo |-A,(B,+F)I(y-¥,) - (A+B)(B, +F)(y-,)
o=(A+B)[A(A +B,+B;+F)+ (A, +B,)(B,+ F)]+ A[A(B,+B,+F)+B,(B, + F)]

Yanagiya T., Yagi J., Omori Y. 1979 reduction of iron oxide pellets in moving bed. Ironmaking and steelmaking, No.3 93-100

_(1_ R?.)lls_(l_Rz)ll3 dp B _1_(1_ R3)1/3 dp

~ @1-R)”@-R)”" 2D, °* (@1-R)"™ 2D,

r3
F=1/k,



4. Data Analysis (cont.)
Stage | Modeling: Volatile Conversion

. Assumptions:
— Both gas and solid streams are in plug flow.

Three-interface USCM for representing the overall reaction rate of the pellet
— Negligible temperature difference between gas and solid.

. Governing Equations 0eC. __ug 0eC. +Z”n 6(L—&)r,
—  C:CO,CO0,,H, H,0 ot GX. d,
—  E:Fe,0,Fe,0,Fe0,Fe O&; _ _Us Z o 6Q1-¢)n. 8)r

. Numerical Methods ot | d,

— Both temporal and spatial terms are discretized by fifth order schemes
— Executed in Fortran

e The overall fraction reduction could be expressed as
follows R=0.1111R,, +0.1889R, +0.7R_

— Ry conversion of reaction from Fe,O; to Fe;0,
— Ry conversion of reaction from Fe,0, to Fe, 4:,0
— Re  conversion of reaction from Fe, 45,0 to Fe



5. CDCL Scale-Up to 25KWth Unit

 Cold Flow Model Study

— Feasibility of Reactor Design

— Hydrodynamic Study of OC,
Coal and Ash

— OC/Coal Residence Time
— Coal Injection Study
— Fine Removal Device

L -
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6. Process Simulation and Analysis

S (=

UNIVERSITY

Systems Analysis Methodology

Performance of CDCL plant modeled using Aspen Plus software

Results compared with performance of conventional pulverized coal (PC) power plants with
and without CO, capture

e U.S. Department of Energy, National Energy Technology Laboratory; Cost and Performance Baseline
for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (November 2010)

e Case 9 - Subcritical PC plant without CO, capture
(“Base Case”)

e Case 10 — Subcritical PC plant with MEA scrubbing system for post-combustion CO, capture
(“MEA Case”)

All plants evaluated using a common design basis
e 550 MW, net electric output
* lllinois No. 6 coal (11,666 Btu/lb HHV, 2.5% sulfur, 11.1% moisture as received)
e  Subcritical steam cycle: 2,400 psig/1,050°F/1,050°F (166 bar/566°C/566°C)
e 2>90% CO, capture efficiency (MEA and CDCL Cases)
e CO, compressed to 2,215 psia (153 bar)

Results are preliminary, will be used to guide further design improvements



6. Process Simulation and Analysis (cont.)

Clean
Spent Enhancer Gas Boost
Air to Compressor
Stack A Gas ::14_
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| . SpentAir
Lockhoppers +Fex0;
Fuel SpentAir
Coal »|Reactor Recycle
15°C ~12 bar Air
i eactor
1bar Pulverizer ) 12 bar 12.6 bar
210,118 kg/h — h
r 3 A
Fe/FeO <
850°C

Indicates heatis recoveredfor
steamcycle

A

12.6 bar

A A
15°C

HP Air
Compressor

LP Air
Compressor

1bar



Aspen Plus® Modeling Results OHIO

UNIVERSITY

Base MEA CDCL
Plant Plant Plant

198,391 278,956 210,118
Clogl) Petet, Ll 1y, (437,378) (614,994) (463,231)
.. 856 121 ~0
CO, Emissions, kg/MWh_., (Ib/MWh__,) (1,888) (266) (~0)
CO, Capture Efficiency, % 0 90 ~100
: 35 49 39
Solid Waste,? kg/MWh_, (Ib/MWh_.,) (77) (108) (87)
Net Power Output, MW, 550 550 550
Net Plant HHV Heat Rate, kiJ/kWh 9,788 13,764 10,357
(Btu/kWh) (9,277) (13,046) (9,817)
Net Plant HHV Efficiency, % 36.8 26.2 34.8
Energy Penalty,® % - 29 5

agxcludes gypsum from wet FGD. PRelative to Base Plant; includes energy for CO, compression.



7. Accomplishments / Phase Il Plans

e Completed synthesis / screening of >150 oxygen carrier particles and
selected particles with optimal performance for further testing

* Demonstrated >99% conversion of CH, (volatiles) at 2.5 kW, scale

* Demonstrated 90-95% conversion of coal char at 2.5 kW, scale using
enhancer gas (CO, & H,0)

 Performed cold flow modeling to demonstrate and evaluate solids
handling

e Plans for Phase Il (2011.8 -2012.8)

Phase Il

Task 1123/ 4[5 /61|78

10

11

12

Subtask 8.2: Sub-pilot Scale CDCL System Construction and Shakedown

Milestone - Proof-of-concept Scale Reactor

Task 9.0: Integrated System Performance

Subtask 9.1: Continuous in-situ CO, Capture

Milestone - continuous operation of Unit

Task 10.0: Techno-Economic Analysis performed by CONSOL

Milestone - Techno -economic Analysis Report
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